MOORE SOUARE COMPREHENSIVE TREE STRATEGY Raleigh Parks and Recreation Department April 2013

#45) 100-Year-Old Quercus phellos 44" DBH, 88' Diameter Tree Protection Area

Diame

#46) 100-Year-Old Quercus prinus 43" DBH, 130' Diameter Tree Protection Area

> #27) 100 Year-Old-Quercus phellos 42" DBH, 84' Diameter Tree Protection Area

#2) 200-Year-Old Quercus phellos 65" DBH, 194' Diameter Tree Protection Area

> #26) 30-Year-Old Quercus phellos 17" DBH, 26' Diameter Tree Protection Area

> > #48) 100-Year-Old Quercus phellos 34" DBH, 50' Diameter Tree Protection Area

> > > #36) 30-Year-Old Quercus phellos

17" ĎBH, 26' Diameter Tree P

#25) 30-Year-Old Querc

#3) 150-Year-Old Q 51" DBH, 152' Diameter

> #1) 150-Year-0 52" DBH, 104' Dia

#34) 100-Year-Old Quercus phellos 34" DBH, 68' Diameter Tree Protection Area

us phellos rotection Area

uercus michauxii Tree Protection Area

DId Quercus michauxii meter Tree Protection Area #32) 150-Year-Old Quercus phellos 48" DBH, 72' Diameter Tree Protection Area

#52) 30-Year-Old Acer rubrum 15" DBH, 30' Diameter Tree Protection Area

#28) 30-Year-Old Quercus phellos 20" DBH, 40' Diameter Tree Protection Area

> #10) 100-Year-Old Quercus phellos 43" DBH, 86' Diameter Tree Protection Area

TABLE OF CONTENTS

Project Overview	5

2010 Master Plan Concept

FINDINGS & ANALYSIS10Existing Trees Analysis10Existing Tree Growth and Decline Projections14Existing Soils Analysis16Soil Modification Study24Existing Topographic Conditions Analysis25Existing Conditions Concerns26

8

RECOMMENDATIONS

Tree Recommendations	31
Pre-construction, Construction, and Post-construction Precautions	34
Long-term Canopy Management Strategy	44
Soil and Topography Recommendations	46
Design Recommendations	47

CONCLUSION

Project Summary	49
List of Recommendations	49

APPENDIX A: Moore Square Tree and Soil Evaluations by Urban Trees + Soils	50
APPENDIX B:Tree Inventory and Management Plan by Bartlett Tree Experts	79

PROJECT OBJECTIVES:

I. Develop tree preservation and enhancement goals to guide the future design of Moore Square improvements.

2. Conduct an intensive analysis of the existing trees, soils and topographic conditions in Moore Square before detailed design phases begin.

3. Summarize and synthesize findings through publicly accessible diagrams in addition to making recommendations for future design improvements of Moore Square.

MOORE SQUARE COMPREHENSIVE TREE STRATEGY OVERVIEW

The conception of the Moore Square Comprehensive Tree Strategy (MSCTS) was proposed as a means to ensure that the long-term preservation and enhancement of the existing Oak Grove drives future design efforts. Traditionally, such a highly detailed existing analysis is undertaken late in the design process often associated with actual construction. However, given the importance of this project and the central role that tree preservation is to this project, the design team felt it critical that such a study be conducted before beginning the schematic design phase. Key to maintaining this commitment is securing all possible technical information on the existing trees and soils before the formal design process begins.

This preemptive body of research and analysis is intended to ensure that the aspirations of the Moore Square Master Plan are developed through a thoughtful and responsible framework in developing improvements for one of Raleigh's most important civic treasures. The project objectives can be broken into three separate phases reflected in this report: 1) developing tree preservation and enhancement goals to guide the future design; 2) conducting an intensive analysis of the existing trees and soils conditions; 3) summarizing and synthesizing findings through publicly accessible diagrams in addition to making future design improvements.

A key part of this recommendation involved retaining the services of James Urban of Urban Trees + Soils, an internationally recognized expert on urban trees and soils to join the design team for this critical phase of the project. Building off the nationally recognized Moore Square Master Plan (finalist in the ASLA National Award in Analysis and Planning 2011), this study offers insight and recommendations to ensure the proposed improvements to Moore Square will live up to their promise. In addition to the analysis of existing conditions, this study has produced rigorous 100-year growth and decline projections for the existing and proposed canopy trees that synthesize the Master Plan with the MSCTS. This modeling has led to a canopy management strategy that is innovative in its scope and comprehensive in its recommendations. This body of work is intended to help fulfill the commitment to the long-term vitality of the Grove and the improvement of Moore Square s a social space for the children and grandchildren of the City of Oaks.

DESIGN TEAM:

Prime Consultant Nationally Recognized Tree Expert Arborist Consulting Landscape Architect CCSGC, P.C., Brooklyn, New York Urban Trees + Soils (James Urban FASLA, ISA), Annapolis, Maryland Bartlett Tree Experts, Raleigh, North Carolina Cynthia Rice Landscape Architecture and Planning, PLLC, Raleigh, North Carolina

Although the natural and built conditions of Moore Square have changed dramatically over its 221-year history, its historical legacy lies in its evolving use as a social space.

6

CULTURAL AND PHYSICAL HISTORY OF MOORE SQUARE

The Moore Square Master Plan was developed through a rigorous design process that included over 30 City and State agencies and public participation.

7

GRANULAR PAVEMENT & MOVABLE CHAIRS

PUBLIC REST ROOMS & UTILITY ROOM ENTRANCE

Moore Square is one of the two surviving squares of William Christmas' 1792 four-square town plan in the capital City of Raleigh, North Carolina. It is a public space with a rich history and a magnificent stand of mature oak trees, giving it tremendous potential to shape the new identity of Raleigh in the 21st Century. Like many cities throughout the United States, the City of Oaks is enjoying a resurgence of life in its downtown core. As an increasing number of young adults, empty nesters, and new residents move back to downtown for its amenities and urban lifestyle, improvement of the quality of Raleigh's public space is critical to its continued economic and cultural growth. This investment in improvements to Moore Square will distinguish Raleigh as a city with premier public spaces and act as a catalyst for downtown growth and economic development. As the City of Raleigh continues to draw new urban dwellers attracted to a burgeoning downtown lifestyle, the city will require beautiful civic spaces to sustain this flourishing urban activity and landmark cultural growth. The Moore Square Master Plan concept design honors the Square's historic heritage while establishing a forward looking vision for a 21st century urban space. The Master Plan seeks to elevate the status of the Square to its historical importance as one of the original four squares of the City of Raleigh, while giving physical expression to the progressive, contemporary and diverse aspirations of the citizens of Raleigh today.

100 Year Old Trees

EXISTING TREE ANALYSIS

TREE EVALUATIONS

There have been a number of tree evaluations undertaken for the trees in Moore Square. The City of Raleigh provided the design team with a tree evaluation at the beginning of the project. Jeffrey Kish of Bartlett Tree Experts, a consultant to the design team, made initial evaluations of each tree. These first two evaluations were focused on general tree health.

Urban Trees + Soils, the design team's soil and tree consultant, made an additional survey. This survey looked at the trees from the perspective of the tree's ability to survive construction and included looking at the tree's vigor, structure and the condition, relative to designing paving and other structures in close proximity to the tree. The goal of this survey was to obtain data to use in calculating the Tree Protection Area and the Trunk Base Protection Area, and to make recommendations on the tree's ability to withstand construction impacts.

Moore Square has nearly 70 trees, the majority of which are mature specimens. They are the soul of the park and treasured by the citizens of Raleigh for their green canopy at the perimeter of the park. Maintaining this canopy is critical to the park improvement plans. The current Master Plan concepts show places where proposed alterations are likely to fall within areas normally considered as part of the trees root zone. This report will set the limits of the Tree and Trunk Protection Areas, but also indicate what are the most critical things to-do and not-to-do within these areas.

Note that only the site's large, mature trees were evaluated for construction impact tolerance. There are 37 large mature trees out of a total of approximately 68 existing trees in Moore Square. The remaining smaller trees at the site will be relatively easy to work around where they are determined to be preserved.

TRUNK BASE EVALUATIONS AND TRUNK BASE PROTECTION AREAS

This evaluation determines the degree of difficulty in working near the base of the tree. The Trunk Base Evaluation is then used to set the Trunk Base Protection Area. This area, close to the base of the tree, is the area where even minor disturbance may severely injure the tree. The Trunk Base Protection Area is the distance new paving should be kept away from the trunk or where special construction is required to eliminate damage to roots and bark. This area must receive special protection Area. The size of the Trunk Base Protection Area is an initial recommendation. The distance may be decreased if special details such as flexible paving surfaces or bridging design are utilized, or may need to be larger due to topography or surface rooting conditions. These stand-off dimensions assume that no cut is required to construct the paving in this area. In areas where paving is already inside of the stand-off zone, as along Blount Street, new paving may be installed provided that the limit of paving is not brought closer to the tree or the paving section deeper than the existing paving.

TRUNK BASE TERMINOLOGY

Trunk Base Evaluation classifications, criteria, and limits of the Trunk Base Protection Area (TBPA) are:

Normal: Reasonably size trunk flair proportion with little damage or other problems. TBPA radius from center of trunk – 1.5 times trunk diameter.

Moderate: Larger size trunk flare, minor damage or other problem that may require special attention in the design. TBPA radius from center of trunk -2 times trunk diameter.

Difficult: Extra large trunk flare or significant surface roots, existing trunk flare damage and other issue that may need additional investigation and response during the design process. Paving stand off radius from center of trunk -2.5 times trunk diameter.

TREE STRUCTURE EVALUATION

This evaluation notes observed problems with branch structure or tree stability. Tree structure is critical to the long-term success of a tree and may be a significant factor in determining if a tree is a good candidate for tree preservation.

TREE STRUCTURE TERMINOLOGY

Good: No observed problems

Fair: Minor branch conflicts such as co-dominant leaders that are easily modified. Poor: Significant branch conflicts such as co-dominant leaders that are not easily modified, dead portions of trees, asymmetrical canopies or trunk leans.

TREE VIGOR TERMINOLOGY

This evaluation records tree growth vigor as determined by leaf color, density and distribution in the canopy. A tree's vigor is a critical indicator of a tree's ability to survive root loss.

Good: Normal leaf color, size and distribution

Fair: Observable variation from normal leaf color, density and distribution in the canopy. Minor twig die back.

Poor: Significant variation form normal leaf color, density and distribution in the canopy. Significant twig die back.

The key to preserving the perimeter canopy is ensuring that the trees that enhance the perimeter grove canopy receive the highest priority.

TREE AGE

CANOPY TREES

FINDINGS

The above diagrams illustrate information collected by Urban Trees + Soils that can be found on the following tree evaluation date matrix. Of the Square's 68 trees, 41% were found to roughly 30 years old, 10% roughly 50, 26% roughly 100 years old, 21% 150 years old, and the remaining 2% 200 years old. Roughly half of the Square's canopy trees (47%) are Oaks, and more than half (56%) are Canopy trees. The above charts graphically represent these findings and illustrate these distributions overlaid on the existing plan of the site. The following section on soils will help to illustrate the conditions in which each of these trees is growing in order to provide insight into why certain trees may be considered in better condition than others and as to how future steps can be taken to ensure healthy long-term strategies for Moore Square.

OAK TREES

On the next page, several charts record the findings of additional tree health as reported in the Bartlett Tree Experts report based on condition, age class, diameter distribution, value, and those with conditions, defects and other structural issues. In addition, it was found that 24 of the 68 trees on the site are recommended for further investigation for a hazardous tree review by the City to ensure public safety for the site.

					Hazard				
			Canopy	Overall	Evaluation				
ID	Tree Name	DBH (In)	Radius (Ft)		Recomnendation		Structure	Vigor	Age Class
	Quercus michau	52.0	25	fair	YES	Moderate	Poor	Fair	mature
	Quercus phellos	65.0	40	good	YES	Difficult	Poor	Fair	over-mature
	Quercus michau	51.0	50	good	YES	Difficult	Poor	Fair	over-mature
4	Quercus phellos	53.0	25	good	YES	Difficult	Fair	Fair	mature
	Quercus alba	35.0	20	good	YES	Moderate	Fair	Fair	mature mature
6	Quercus phellos	43.0 29.0	25 20	good	YES	Difficult Moderate	Fair	Good	
7	Quercus phellos Cornus florida	29.0 4.0	10	good fair	YES	woderate	Fair	Good	mature Young
	Quercus phellos	43.0	35	good	YES	Difficult	Poor	Fair	mature
11	Carya illinoens	32.0	25	good	YES	Normal	Fair	Good	mature
12	Acer saccharum	32.0	20	good	YES	Normal	Fair	Good	mature
13	Quercus phellos	50.0	25	good	YES	Difficult	Fair	Fair	mature
15	Carya illinoens	27.0	25	good	field check	Moderate	Fair	Good	mature
16	Acer palmatum	8.0	10	good					mature
17	Acer palmatum	4.0	4	fair					Yioung
18	Acer campestre	8.0	10	good					young
19	Magnolia x soul	5.0	10	good					mature
20	ILAT Ilex sp	9.0	4	good					mature
21	Quercus shumard	6.0	6	good					young
23	Quercus palustr	20.0	15	fair		Normal	Good	Fair	mature
	Malus species	11.0	10	fair					mature
	Quercus phellos	17.0	20	fair		Normal	Good	Fair	mature
	Quercus phellos	17.0	15	good	1000	Normal	Fair	Fair	mature
27	Quercus phellos	42.0	30	good	YES	Difficult	Fair	Fair	mature
	Quercus phellos	20.0	15	fair	field check	Normal	Poor Good	Poor	mature
29	Quercus alba Quercus phellos	37.0	25 25	good good	YES	Moderate Moderate		Fair	mature
30	Quercus palustr	33.0 18.0	25 15	Ŭ.	YES	Normal	Good Good	Fair Good	mature mature
32	Quercus phellos	48.0	40	good good	YES	Difficult	Good	Fair	mature
	Quercus phellos	33.0	30	good	YES	Moderate	Poor	Fair	mature
34		34.0	30	fair	YES	Moderate	Fair	Poor	mature
35	Acer buergerian	3.0	6	good		moderate	i dii		young
36	Quercus phellos	10.0	15	good					young
	Ulmus americana	7.0	10	good					young
39	Taxodium distic	10.0	10	fair					mature
40	Taxodium distic	13.0	15	good					mature
41	Taxodium distic	15.0	15	good					mature
42	Quercus phellos	36.0	20	good	YES	Normal	Fair	Poor	mature
43	Carya illinoens	36.0	25	good	YES	Normal	Poor	Fair	mature
45	Quercus phellos	44.0	35	good	YES	Difficult	Fair	Fair	mature
	Quercus prinus	43.0	25	fair	field check	Difficult	Poor	Poor	mature
47	Ilex sp	4.0	10	good					Young
	Quercus phellos	34.0	35	good	YES	Moderate	Good	Good	mature
49	Quercus shumard	3.0	10	good					young
	Prunus x yedoen	11.0	6	fair				- ·	mature
	Magnolia grandi	29.0	20	fair		Normal	Poor	Fair	mature
	Acer rubrum	15.0	15 4	fair fair		Normal	Good	Good	mature
53	Picea pungens Acer palmatum	7.0 12.0	4 15	fair fair					young mature
	Acer palmatum	12.0	15	good					mature
56	Acer palmatum	6.0	15	fair					mature
	Acer palmatum	17.0	15	fair					mature
59		25.0	20	good					over-mature
	Acer palmatum	16.0	15	good					mature
	Quercus phellos	18.0	15	fair	YES	Normal	Fair	Good	mature
	Quercus phellos	41.0	25	good	YES	Normal	Fair	Fair	mature
64	Quercus phellos	34.0	35	good	YES	Moderate	Fair	Good	mature
65	Quercus michau	40.0	35	good	field check	Normal	Fair	Good	mature
	Quercus phellos	46.0	25	good	field check	Difficult	Fair	Good	mature
	Cedrus deodara	16.0	10	fair					mature
	Quercus phellos	46.0	30	good	YES	Difficult	Fair	Fair	mature
	Quercus phellos	43.0	25	good	field check	Moderate	Fair	Fair	mature
	Quercus nuttall	4.0	6	good					young
	Acer rubrum	5.0	8	good					young
	Quercus michau	8.0	10	good					young
	Quercus michau	8.0	10	good					young
	unlisted Acer palmatum	7.0 9.0	4	good					young mature
.05	Acer pairiatum	9.0	*	poor	l	1	1		mature

TREE EVALUATION DATA MATRIX:

The data above is a matrix that includes the field observations ratings for each of the large, mature trees as recorded by Urban Trees + Soils.

CONDITION CLASS BREAKDOWN

AGE CLASS BREAKDOWN

Quantity

3

43

12 10 % of Total

4%

63% 18%

15%

Condition Class	Quantity	% of Total	Condition Class
Good	33	49%	Good
Fair	31	46%	Fair
Poor	4	6%	Poor
Dead	0	0%	Dead

TREE DIAMETER DISTRIBUTION

HIGHEST ESTIMATED VALUE

Tree #	Common Name	DBH	Estimated Value
2	Willow Oak	65	\$51,715.02
66	Willow Oak	45	\$ 50,335.33
6	Willow Oak	43	\$ 46,051.58
4	Willow Oak	53	\$ 42,478.5 I
13	Willow Oak	50	\$ 39,791.11
32	Willow Oak	48	\$ 37,907.08
1	Swamp White Oak	52	\$ 36,983.05
65	Swamp White Oak	40	\$ 36,933.46
3	Swamp White Oak	51	\$36,184.04
68	Willow Oak	46	\$ 35,953.81

TREES WITH CONDITIONS, DEFECTS, OR OTHER STRUCTURAL ISSUES

Tree #	Common Name	DBH	Condition or Defect
2	Willow Oak	65	wound- branch, storm damage, lightning damage
3	Swamp White Oak	51	wound-stem, deadwood> 2
4	Willow Oak	53	deadwood<= 2
6	Willow Oak	43	deadwood<= 2
12	Sugar Maple	32	fungi/conks
16	Japanese Maple	8	deadwood<= 2
17	Japanese Maple	4	deadwood<= 2
18	Paperbark Maple	8	wound-stem
25	Willow Oak	17	suppressed
26	Willow Oak	17	codominant leaders
27	Willow Oak	42	lean
28	Willow Oak	20	poor branch structure
29	White Oak	37	fungi/conks
31	Pin Oak	18	girdling roots present
32	Willow Oak	48	wound-branch
34	Willow Oak	34	other, poor branch structure
39	Bald Cypress	10	suppressed
42	Willow Oak	36	uneven crown, wound-stem
43	Pecan	36	lean, over extended branch
50	Yoshino Cherry		wound-stem
51	Southern Magnolia	29	wound-stem
52	Red Maple	15	girdling roots present, cavity-stem
54	Japanese Maple	12	wound-stem
56	Japanese Maple	6	deadwood<2
58	Japanese Maple	17	cavity-stem
59	Japanese Maple	25	cavity-branch, codominant leaders
60	Japanese Maple	16	wound-stem, wound branches
71	Red Maple	5	wound-stem

TREES RECOMMENDED FOR HAZARDOUS TREE REVIEW

Tree #	Botanical Name	DBH	Tree #	Common Name	DBH
1	Quercus michauxii	52	30	Quercus phellos	33
2	Quercus phellos	65	32	Quercus phellos	48
3	Quercus michauxii	51	33	Quercus phellos	33
4	Quercus phellos	53	34	Quercus phellos	34
5	Quercus alba	35	42	Quercus phellos	36
6	Quercus phellos	43			
7	Quercus phellos	29	45	Quercus phellos	44
10	Quercus phellos	9	48	Quercus phellos	34
11	Carya illinoensis	32	62	Quercus phellos	18
12	Acer saccharum	32	63	Quercus phellos	41
13	Quercus phellos	50	64	Quercus phellos	34
27	Quercus phellos	42	68	Quercus phellos	46
29	Quercus alba	37			

EXISTING TREE GROWTH AND DECLINE PROJECTIONS

The existing tree analysis also included a 100-year growth and decline projections study to evaluate the viability of the existing grove. A detailed set of criteria for these studies was developed in close collaboration with Urban Trees + Soils that included canopy growth, trunk growth tree loss and parameters of declining trees. Although it is impossible to predict the exact future of tree growth and decline, this study was undertaken as a means to establish a reasonable understanding of the likely trends that will occur over the next 100 years.

For the purposes of this study, only canopy trees that have the potential to contribute to the enhancement of the perimeter grove were included in this study.

Without proper canopy tree management and planning, it is likely that 65% of the existing oaks will be lost over the next 50 years.

FINDINGS

The results from this analysis showed that over 60% of the existing trees will expire in the next 50 years and 90% in the next 100 years. It is critical that the Moore Square improvements anticipate these trends and begin a thoughtful plan to introduce new canopy trees in target areas to ensure that as the mature canopy trees naturally begin to decline and expire, there are new trees growing in to take their place. The study also found that the relatively low diversity of tree age is the primary reason for the two anticipated large waves of tree decline. When considering planting design strategies for Moore Square, it is recommended that a similar long-term approach be unitized to increase the age diversity of the grove.

The Master Plan is not only working to preserve the significant trees, but to also respect their future growth, decline, death and replacement. Trees are living organisms that will grow and decline and die. In order to determine the impact of future changes in the canopy, it is necessary to make assumptions about this process. The following are the assumptions used to develop canopy growth studies over time. It is recognized that these assumptions are very general and that individual trees will not respond in this precise manner. However, the studies do assist in providing a basis for predicting park canopy changes and where and when new trees might be added to the park.

*Note trees represented as irregular forms rather than circles to indicate canopy competition over time.

100 YEAR EXISTING CANOPY TREE GROWTH AND DECLINE PROJECTIONS

PROJECTION CRITERIA I. EXISTING CANOPY GROWTH

- 1.1) Canopy of good vigor trees expands 10" radius a year for the first 40 years
- 1.2) Canopy of good vigor trees expands 8" radius a year between 40 and 80 years old
 1.3) Canopy of good vigor trees expands 6" radius after 80 years old and beyond
 1.4) Canopy of fair vigor trees expands 8" radius a year for the first 40 years

- 1.5) Canopy of fair vigor trees expands 6" radius a year between 40 and 80 years old
- 1.6) Canopy of fair vigor trees expands 4" radius a year after 80 years old and beyond1.7) Canopy of poor vigor trees expands 6" radius a year for the first 40 years
- 1.8) Canopy of poor vigor trees expands 4" radius a year between 40 and 80 years old
- 1.9) Canopy of poor vigor trees expands 2" radius a year after 80 years old and beyond

2.TRUNK GROWTH

- 2.1) Trunk of good vigor trees will expands 1/2" radius a year
- 2.2) Trunk of fair vigor trees expands 1/4" radius a year
- 2.3) Trunk of poor vigor trees expands 1/8" radius a year

3. CANOPY TREE LOSS

- 3.1) Canopy trees will have a lifespan of approximately 150 years3.2) In 20 years 100% of the poor vigor trees will be lost
- 3.3) In 40 years 20% of the fair vigor trees will be lost
- 3.4) In 60 years 50% of the fair vigor and 10% of the good vigor trees will be lost
- 3.5) In 80 years 80% of the fair vigor trees and 30% of the good vigor trees will be lost
- 3.6)100 years 100% of the fair vigor trees and 70% of the good vigor trees will be lost
- **4. PARAMETERS OF IDENTIFYING DECLINING TREES**
- 4.1) Canopy trees with lower structure rating and trunk sizes will decline faster
- 4.2) Older canopy trees will be lost before younger canopy trees
- 4.3) Trees experiencing excessive canopy competition will decline faster

5. NEW TREE GROWTH

- 5.1) Canopy trees will have a lifespan of approximately 150 years
- 5.2) New canopy trees will be planted at 3" caliper dbh
- 5.3) 100% of new canopy tress will be considered good vigor
- 5.4) Canopies with compress and elongate when in competition

EXISTING SOILS ANALYSIS

This report examines the soils from the perspective of existing and future plant growth. The findings are based on review of the site conditions on September 17 and 18, 2012, and the review of the planning documents for the proposed improvements to the park. All references to historical site conditions are taken from the Master Plan Report from 2010.

PAST TO PRESENT VIEW OF SOIL DISTURBANCE

Moore Square was part of the original 1772 Town Plan for the city. It likely evolved from either forest or farm land and developed directly into a public park. This would have resulted in minimum soil disturbance.

Only two structures of any significance were ever built in the park, those being before 1896. These structures fall in the central area of disturbance and were likely out of the current root zones of large existing trees. The small kiosk built on the south side of the park appears to have caused minimum soil disturbance compared to disturbances from walks, later grading and utility work.

The earliest representations of trees show the trees clustered on the east side of the park, possibly a remnant forest or second growth after logging. This edge is characterized by steeper slopes and may have been more irregular than currently sloped. The more formal designs of 1896 and 1914 would have likely smoothed grading on the east side of the park as well as removed the previously mentioned trees. The grading of the current plan appears to have pushed a layer of fill to the east of the center of the park.

The many alignments of walks over the park's history have caused soil disturbance along the edges. The center of the park and the four wider arms of the crossing diagonals have also introduced their share of soil disturbance.

The many different uses and events at the Square have ranged from pasture, civil war troop camp to a contemporary music festival venue. All functions have exacted a toll on soil quality. Hard layers of soil were encountered in many locations. Multiple rounds of park utility electric and water lines have also disturbed the soil.

Throughout the park, large areas of mulch beds cover the ground. These are areas where park maintenance has not been able to keep turf growing. Much of this turf problem is related to intense use during the many concerts and festivals staged in the park. These areas are also almost always within the canopy of the large trees. It is likely that people gather more in the shade during events contributing to turf damage.

While all these disturbances result in almost all areas of the park being disturbed to some degree, the soil disturbance in the large center space, its northern extension to Hargett Street and portions of the east side of the park are significant to the point of impacting existing and future tree growth.

SOIL PROFILE PITS

At 20 test pit locations, (marked TP #1-20), Urban Trees + Soils analyzed soils at various depths for a cross-section comparison looking at moisture, material composition and density. The 20 multi-layer profile pits were dug and recorded. The approximate locations of all profile pits are shown on the following "Soil Testing Pit Locations" plan. The following is the description of the soil profiles observed. Note the following gradations of terms for moisture and compaction are used in this report to describe soil conditions. Soil textures are USDA terminology as estimated during the digging process.

MOISTURE TERMINOLOGY

Description of soil moisture from dry to wet as determined by visual analysis and feel.

Dry – soil will not hold together after being crushed Damp – soil will marginally hold together when crushed Moist – soil can be formed into a ball Wet – soil sticks together and will stick to the hand Saturated – free water observed on the soil

DENSITY TERMINOLOGY

The following are terms used to describe soil density from loose to solid as felt during the angering process. Note that dry soils that are not overly compacted can "feel' compacted, while compacted soil can "feel" soft when moist. The presence of roots is a better indication of compaction than the below root limiting levels. Root observations are noted when encountered.

Loose – auger easily penetrates the soil Soft – auger penetrates the soil with moderate effort Firm – auger requires strong push to penetrate the soil Hard – auger requires maximum pressure to penetrate the soil Refusal – auger refuses to penetrate the soil

SOIL NUTRIENT TESTING

Separately from the soil profile pits, at 12 locations (marked 1-12, on the Soil Bulk Density and Nutrient Test, marked A-L, Location plan), nutrient tests were taken by Bartlett Trees Experts for an specific soil analysis of chemical makeup and bulk density.

reached. Refer to the Soil Modification Study found at the end of the Soils Analysis for a synthesis of these findings.

# 1	#2	#3	#6	#7	#8	# 13	# 18
Surface Cover: Wood Chips 0-0.2' Decomposing wood chip mulch: dark brown/black, moist; soft, roots observed	Surface Cover. Wood Chips	Surface Cover: Wood Chip mulch 0-0.3' Wood chips; dark brown/black; moist soft; roots observed	Surface Cover: Wood Chip mulch	Surface Cover: Wood Onp mulch	Surface Cover: Wood Chip mulch 0-0.2' Decomposing wood chips; dark	Striace Cover: Turf grass 0-0-3' Loam: dark brown/black; moist; soft; roots observed	Surface Coven Wood chip mulch
0.2'-0.5' High organic fine sandy loam; dark brown; damp/dry; roots observed	0-0.2' Wood chip mulch 0.2'-0.3' Very organic loam, dark brown/black; mojst; loose; roots observed 0.3'-0.4' Interface: sandy loam fill: brown: dry	0.3'-0.5 Decomposed organic material; dark brown/black; moist; soft; roots observed	0-0.3' Decomposing wood chips, dark brown/black; moist; soft; roots observed 0.3'-0.7' Interface; sandy loam; dark brown; moist; soft; roots observed	0-0.1' Scant wood chip mulch 0.1'-0.7' Sandy toam; brown; damp; soft	Drown/black; molist; soft; roots observed 0.2'-0.7' Fine sandy loam; brown; dry; firm; roots observed	0.3'-0.5' Sandy loam; dark brown; moist; soft; roots observed	0-0.6' Decomposing mulch; dark brown/black; moist; soft; roots observed
0.5'	0.4'-0.6' Interface: loam fill: dark brown: dry firm: roots observed	0.5-0.8' Fine sandy loam/ sandy clam loam; moist; soft; roots observed		0.7'-1.0' Coarse sand; grey; dry; soft		0.5 ¹⁻ 0.8' Sandy loam; brown; moist; soft; roots observed	0.6'-1.1' Fine sandy loam; dark brown; moist; soft; roots observed
1.0'	0.6'-1.2' Interface: fine sandy/ gravelloam: grey/brown; hard to very hard; roots observed	0.8'-1.4' Fine sandy clay loam/gravel; orange brown; moist; soft; roots observed Cloth strip found at approximately 1.0', roots observed and large root struck	0.7'-1.4' Interface; fine sandy loam; light brown; dam, firm; roots observed	1.0' Refusal at gravel layer	0.7'-1.2' Interface; fine sandy silt loam; light brown; dn; firm; roots observed	0.8'-1.2' Sandy clay loam; light brown/ orange; moist; firm; roots observed	
1.0'-1.4' Fine sandy loam; light brown/orange; dry; hard; roots observed	Coal ash fragments 1.2' Trace of sandy clay, orange; dry; auger refusal	1.4'-1.7' Fine sandy clay loam, orange/ brown; moist; solt; minor roots	1.4°2.4' Interface: gravel and fine sandy clay, orange; most; firm	Tree planting island built parking space. Tree recently planted. Another tree similar island is dead.	1.2'-1.3' Interface; silty sandy loam; dark brown; moist; firm; roots observed; glass fragment; likely buried fill soil 	1.2'-1.6' Clay loam; orange; damp to moist; hard	1.1'-1.5' Fine sandy loam; brown; moist; soft; roots observed
1.5' 1.4'-1.8' Fine sandy loam: orange/brown: dry: very hard: roots observed 1.8'-2.1 Fine sandy loam: orange: dry; very hard: roots observed	Fill soils over sub grade. Disturbed soil profile.	1.7'-2.6' Gntty, gravel sandy loam, orange; dry, firm to very hard with depth			1.9' Auger refusal: bits of hard orange subsoil observed	1.6' Very hard: stopped digging Disturbed profile	
2.0' 2.1 Auger refusal The soils below 0.5' are likely to be an undisturbed soil profile. Soil profile taken near one of the older and healthier trees in the park.		2.6' Gritty, gravel sandy loant; orange; dry; firm to very hard with depth	2.4' Stopped digging Profile similar to Location #3 except Orange soil starts about 1.5'. Highly disturbed soil near walk				2.1' Auger refusal on large root
1							19

Profile below 1.4' likely an undisturbed subsoil. Profile adjacent to largest (DBH) tree on site.

EXISTING SOILS PROFILES

East Hargett Street

Soils ranging across the site at 20 different sites were tested using a methodology of test pit samples to understand not only the topography and amount of existing soils and types, but more specifically, the chemical makeup and cross section at various depths of the soils across the site.

South Person Street

TEST PIT SOIL ANALYSIS

Remarks: The soils below 0.5' are likely to be an undisturbed soil profile. Soil profile taken near one of the older and healthier trees in the park.

LOCATION #2

Remarks: Fill soils over subgrade soils. Disturbed soil profile.

LOCATION #3		
Soil profile	Depth	Description Surface cover: Wood chip mulch
	0-0.3'	Wood chips; dark brown/black; moist; soft; roots observed
	0.3'-0.5'	Decomposed organic material; dark brown/black; moist; soft; roots observed
	0.5'-0.8'	Fine sandy loam/ sandy clay loam; brown; moist; soft; roots observed
	0.8'-1.4'	Fine sandy clay loam/gravel; orange brown; moist; soft; roots observed;
Case.		Cloth strip fond at approximately 1.0', roots observed and large root struck
	1.4'-1.7'	Fine sandy clay loam, orange/ brown; moist; soft; minor roots
	1.7'-2.6'	Gritty, gravel sandy clay loarn; orange; dry; firm to very hard w/depth
	2.6'	Same as above; very dry; auger refusal

Remarks: Profile below 1.4 feet likely an undisturbed sub soil. Profile adjacent to largest (DBH) tree on site

LOCATION #4	LOCATION #4								
Remarks: Profile similar to Location #3									
LOCATION #5	LOCATION #5								
Remarks: Profile sim	Remarks: Profile similar to Location #3 except Orange soil starts at about 1.5'.								
LOCATION #6									
Soil profile	Depth	Description Surface cover: Wood chip mulch							
	0-0.3'	Decomposing wood chips, dark brown/black; moist; soft; roots observed							
	0.3-0.7'	Interface; sandy loam; dark brown; moist; soft; roots observed							
	0.7-1.4'	Interface; fine sandy loam; light brown; damp, firm; roots observed							
	1.4'-2.4'	Interface; gravel and fine sandy clay; orange; moist, firm							
	2.4'	Stopped digging							

Remarks: Highly disturbed soil near walk

Depth Description Soil profile Depth Description Surface cover: Mulch 0-0.1 0-0.1 Scant wood chip mulch Sandy learn; brown; damp; soft 0.7.1.0' 0.7.1.0' Coarse sand; grey; dry; soft 1.0' Refusal at gravel layer

Remarks: Tree planting island built into parking space. Tree recently planted. Another tree in similar island is dead.

LOCATION #8					
Soil profile	Depth	Description Surface cover:			
ALC: NO	0-0.2' 0.2'-0.7'	Decomposing wood chips; dark brown/black; moist; soft; roots observed Fine sandy loam; brown; dry; firm; roots observed			
	0.7'-1.2'	Interface; fine sandy silt loam; light brown; dry; firm; roots observed			
	1.2'-1.3' 1.3'-1.9'	Interface: silly sandy loam; dark brown; moist; firm; roots observed, glass fragment, likely buried fill soll Interface; fine sandy silt loam; light brown; dry; hard; roots observed			
	1.9'	Auger refusal; bits of hard orange subsoil observed			

LOCATION #9

Soil profile	Depth	Description
		Surface cover: Wood chip mulch
Profile not		
photographed		Highly disturbed soil; multi layers; moist, one layer slightly anaerobic
	•	
Remarks: in bed no	ext to electr	ic vault
LOCATION #	¢10	
Soil profile	Depth	Description
		Surface cover: Wood chip mulch
Same as profile #1		
Remarks:		
LOCATION #	¢11	
Soil profile	Depth	Description
	.,	Surface cover: Wood chip mulch
Same as profile		

Remarks:

#1

LOCATION #12				
Soil profile	Depth	Description Surface cover: Wood chip mulch		
Same as profile #1		Soil slightly wetter than other #1 profiles		

LOCATION #13

1		I =
Soil profile	Depth	Description
		Surface cover: Turf grass
		•
and the second of the		
and the second second	0-0.3'	
A CONTRACTOR OF A CONTRACTOR	0-0.3	Loam; dark brown/black; moist; soft; roots
- A Street of the state		observed
 Martin States and Martin States 	0.3'-0.5'	Sandy loam; dark brown; moist; soft; roots
	0.0 0.0	observed
		observed
The second second second second	0.5'-0.8'	Sandy loam; brown; moist; soft; roots observed
A REAL PROPERTY AND A REAL PROPERTY.	0.8'-1.2'	Sandy clay loam; light brown/orange; moist;
	0.0 - 1.2	
		firm; roots observed
A CONTRACTOR OF A CONTRACTOR O		
	1.2'-1.6'	Clay loam; orange; damp to moist; hard
CANE SHEET STORE		· · · · · · · · · · · · · · · · · · ·
- DECLARY CONTRACT AND		
A DALLAR A STATE		
A REPORT OF A R		
A DESCRIPTION OF THE REAL PROPERTY OF		
A STATE OF A		
A Dec I I and I am and I a		
A REAL PROPERTY AND A REAL		
The second second second	1.6'	Many bands Otoma and displays
S Part and	1.0	Very hard; Stopped digging
1	1	
1	1	

Remarks: Disturbed profile

LOCATION #14

Soil profile	Depth	Description
Son prome		
		Surface cover: Wood chip mulch
Same as profile		
earne as preme		
#1		

Remarks:

LOCATION #15			
Soil profile	Depth	Description Surface cover: Turf grass	
Profile not photographed	0-0.7'	Loamy soil, dark brown; moist; soft	
	0.7	Fine sandy clay loam: orange, damp: firm	

Remarks:

LOCATION #16				
Soil profile	Depth	Description Surface cover:		

Remarks:

LOCATION #17			
Soil profile	Depth	Description Surface cover: Turf grass	
Same as # 1		Canado Cover. Tan graso	

Remarks.

Test pits at locations 15 -17 was an attempt to confirm the edge of the disturbed soil in this area of the site.

LOCATION #18

Remarks:

LOCATION	#19	
Soil profile	Depth	Description
Same as #13		Surface cover: Turf grass
Remarks:		
LOCATION	#20	
Soil profile	Depth	Description
		Surface cover:
Profile not photographed	0-1.5'	Sandy loam; brown; damp; firm
	1.5'	Interface; coarse sandy clay loam; red/orange; damp hard

Remarks: Fill soil over graded subsoil

*Test pit location and analysis by Urban Trees + Soils Further information located in Appendix A of this report.

to Remarks: Disturbed fill soils

East Hargett Street

Soil was collected by the Bartlett Tree Experts from the top layer of the soil for nutrient testing. Samples were processed by Bartlett Tree Experts soil labs. The purpose of the testing was to gain a background chemical profile of the upper layer of the soil. The test results and lab recommendations for modifications to soil nutrients are included in this report.

South Blount Street

NUTRIENT ANALYSIS

Soil Ornanic Matter (CM) 4.4 Medium

Soli pH	6.3	Acceptable	Ideal pH range for Other: 5.5 to 6.5
Ntrogen (ENR)	113.0		
Photphorous (P)	110.0	High	
Potassium (K)	514.0	Very High	
Magnesium (Mg)	618.0	Very High	
Calcurri (Cal	4640 D	* Machan	

		Recommendations	
		Pounds or Gallons	Kp or Liters
Prescription Fert	notest	per 1000 sq ft.	per 100 sg m
Nitrogen	30 - 0 - 0 gallons	0.7	27
	38 - 0 - 0 gallons	5.0	2.4
Phosphorus	0 - 30 - 0 gallons	0.0	0.0
Potessium	0 - 0 - 52 pounds.	0.0	0.0
Gypsum	pounds	100.0	48.0
Lime	polletized	0.0	0.0
	powdered	0.0	0.0
Suther	pounds	0.0	0.0
Magnesium	pounds	0.0	0.0
Iron chelale	gallons.	0.0	0.0
	pounds	0.0	0.0
Manganese	galora	0.0	0.0
	pounds.	0.0	0.0
Conventional Fe	rtilization		
Boost Natural		32	130.0
Boost		16.0	65.0
Boost Granular		5.0	2.4
Organic Milorgan		10.0	4.8
Mulch or incorpo	rate organic matter.	Yes	

Numert Releases Capacity 17.6 Ven

Other 55 to 6.5

LOCATION #B

Soll pH	5.6	Acceptable	Ideal pH range for
Nitrogen (ENIR)	86 D		
Phosphorous (P)	334.0	Very High	
Potensken (K)	182.0	* Low	
Magnesium (Mg)	275.0	* Modium	
Calcium (Ca)	1954.0	* Medium	
	Nitrogen (ENR) Phosphorous (P) Polassium (K) Magnesium (Ng)	Nitrogen (ENR) 85.0 Phospherous (P) 334.0 Potensken (K) 182.0 Magnesium (Mg) 270.0	Nitrogen (ENR) 85.0 Photphotous (P) 334.0 Very High Potassum (K) 182.0 * Low Magnesium (Mg) 270.0 * Medium

		Molybdenum (Mo)	9.0
Soli Organic Ma	mer(OM) 3.1 * Low	Nutrient Retention Capacity	8.4 High
		Recommendations	
		Pounds or Gaillons	Kg or Liters.
Prescription Fer		per 1000 sq ft.	per 100 sq. m
Nerogen	30 - 0 - 0 gallons	0.7	2.7
	38 - 0 - 0 gallons.	5.0	2.4
Photphorus	0 - 30 - 0 gallons.	0.0	0.0
Pofasskam	0 - 0 - 52 pounds	4.0	1.9
Gypsum	pounds.	60.0	26.8
Lime	poliotzed	0.0	0.0
	powdered	0.0	0.0
Sulfur	pounds	0.0	0.0
Magnesium	pounds	7.0	3.4
fron chelate	gations	0.0	0.0
	pounds	0.0	0.0
Manganese	gallons	0.0	0.0
	pounds	0.0	0.0
Conventional Fe	rtilization		
Boost Natural		50	203.2
Boost		25.0	101.6
Boost Granular		10.0	4.8
Organic Milorga	tille	20.0	9.6
Rib data an income	which personal resultant	Ven	

LOCATION #C

6.4 Acceptable 113.0 168.0 Very High 704.0 Very High 856.0 Very High ideal pH range for Other: 5.5 to 6.5

		Recommendations Pounds or Gallons	Kg or Liters
Prescription Fertilization		per 1000 sq ft.	per 100 sq. m
Ntrogen	30 - 0 - 0 gallons	0.7	2.7
	38 - 0 - 0 galom	5.0	2.4
Phosphorus	0 - 30 - 0 galloms	0.0	0.0
Potassium	0 - 0 - 52 pounds.	0.0	0.0
Gupsum	pounds	100.0	48.0
Lime	poletand	0.0	0.0
	powdered	0.0	0.0
Sultar	pounds	0.0	0.0
Magnesium	pounds	0.0	0.0
Iron chelate	galions	0.0	0.0
	pounds	0.0	0.0
Manganese	gallons	0.0	0.0
	pounds	0.0	0.0
Convertional Fe	rtilization		
Boost Natural		32	130.0
Boost		16.0	65.0
Boost Granular		5.0	2.4
Organic Milorga	nite	10.0	4.8
Made to an annual of	sale organic matter	Yes	

Ideal pH range for Other: 5.5 to 6.5

LOCATION #D 5.9 Acceptable

110.0 138.0 Vary High 438.0 High 500.0 High

Soli Organic Matter (OM) 4.3 Medium		Nutrient Retention Capacity	15.2 Very High
		Recommendations	
		Pounds or Gallons	Kg or Liters
Prescription Fertilization		per 1000 sq. R.	per 100 kg. m
Nitrogen.	30 - 0 - 0 gallons	0.7	2.7
	38 - 0 - 0 gations	5.0	2.4
Phosphorus	0 - 30 - 0 gallons	0.0	0.0
Potassium	0 - 0 - 52 pounds	0.0	0.0
Gypsum	pounds	100.0	48.0
Line	polletized	0.0	0.0
	powdered	0.0	0.0
Sultar	pounds.	0.0	0.0
Magnesium	pounds	0.0	0.0
Iron chelate	gallons	0.0	0.0
	pounda	0.0	0.0
Manganese -	gallons.	0.0	0.0
	pounds	0.0	0.0
Conventional Fe	rtilization		
Boost Natural		32	120.0
Boost		16.0	65.0
Boost Granular		5.0	2.4
Organic Miorga		10.0	4.8
Mulch or incorpo	viate organic matter	Yes	

Soil Organic M	atter (CM) 3.7 Medium	Nutrient Retention Capacit	y 8.4 High
		Recommendations	No or Liberty
Prescription Fe	tilization 30 - 0 - 0 gatons 30 - 0 - 0 gatons	Pounds or Gallons per 1000 sq. ft. 0.7	Kg or Liters per 100 sq. m 2.7
Ntrogen	30 - 0 - 0 gations 38 - 0 - 0 gations	0.7	2.7
Phosphorus	0 - 30 - 0 gallons	0.0	0.0
Potassium	0 - 0 - 52 pounds	0.0	0.0
Gypsum	pounds	60.0	28.8
Line	pelletized powdered	0.0	0.0
Sutur	pounds.	0.0	0.0
Magnesium	pounds	7.0	3.4
Iron chelate	galions pounds	0.0	0.0
Manganese	galions	0.0	00
	pounds	0.0	0.0
Conventional F	ertilization		
Boost Natural		32	130.0
Boost Boost Granular		16.0	65.0
Organic Milorg	atile	20.0	3.4 9.6
Mulch or incorp	orato organic matter	Yes	
1.0047			
LOCAT			
Soil pH	5.7 Acceptable	Ideal pH range for Other:	5.5 to 6.5
Ntrogen (ENR Phosphorous () 106.0 P) 192.0 Very High		
Potassium (K)	262.0 High		
Magnessum (M	254.0 * Medium		
Celcium (Ca)	2004.0 * Medium		
Soil Organic M	atter (OM) 4.1 Medium	Nutrient Retention Capaci	ty 8.7 High
		Recommendations	
		Pounds or Gallons	Kg or Liters
Prescription Fe	rtilization 30 - 0 - 0 gallons 38 - 0 - 0 nations	Pounds or Gallons per 1000 sq. ft. 0.7	Kg or Liters per 100 sg m 2.7
	38-0-0 gations	5.0	2.4
Phosphorus	0 - 30 - 0 gations	0.0	0.0
Potasakum Gupsum	0 - 0 - 52 pounds pounds	0.0	0.0
Lime	nelletized	0.0	28.8
	powdered	0.0	0.0
Sufur	pounds	0.0	0.0
Magnesium iron chetala	pounds gallons	7.0	3.4
ston checate	pounds	0.0	0.0
Manganese	galiona	0.0	0.0
	pounds	0.0	0.0
Conventional / Boost Natural	ertilization		130.0
Boost Natural		32 16.0	130.0
Boost Granula		5.0	2.4
Organic Milorg	anite porate organic matter:	Yes 10.0	4.8
NOCI D' NOU	orale organic masar.	100	
LOCAT	ION #G		
Sol pH	5.5 Acceptable	Ideal pH range for Other: 1	5.5 10 6.5
Nilrogen (ENR	73.0	the second second	
Phosphorous (P) 576.0 Very High		
Potassium (K) Magnesium (N	314.0 High 178.0 * Medium		
Calcium (Ca)	1360.0 *Low		
		Molybdenum (Mo)	0.0
Soli Organic M	atter (06/) 2.4 * Very Low	Nutrient Retention Capacit	ty 6.9 Medium
		Recommendations Pounds or Gallons	Kg or Liters per 100 sq. m 4.1
Prescription Fe	ntilization 30 - 0 - 0 gallons	per 1000 sq. ft. 1.0	per 100 sq. m
Ntrogen	30 - 0 - 0 galons	1.0	4.1
Phosphorus	38 - 0 - 0 gallons	7.5	3.6
Prosphorus Potassium	0 - 30 - 0 gallons 0 - 0 - 52 pounds	0.0	5.0
Gypsum	pounds	50.0	24.0
Lime	poliefand	0.0	0.0
Subr	powdered pounds	0.0	0.0
Magnesium	pounds	5.0	2.4
iron cheiate	nations	0.0	0.0
	pounds	0.0	0.0
Manganese	pations pounds	0.0	00
Conventional F	ertilization		60
Boost Natural		50	203.2
Boost		25.0	101.6
Boost Granula Organic Milorg		10.0	4.8
Organic Maorg Mulch or incorg	iorate organic matter	Yes 25.0	12.0
LOCAT			
Soll pH	6.2 Acceptable 110.0	Ideal pH range for Other:	5.5 to 6.5
Nérogen (ENR			

Sol pH

Phosphorous (P) Potassium (K)

5.9 Acceptable

18.0 345.0 Very High 374.0 Very High

Ideal pH range for Other: 5.5 to 6.5

116.0 High 418.0 High 542.0 High

		and a second sec	
		Recommendations	
		Pounds or Gallons	Kg or Liters
Prescription Fert		per 1000 sq. ft.	per 100 sq. m
Nitrogen	30 - 0 - 0 gallons	0.7	2.7
	38 - 0 - 0 gallons	5.0	2.4
Phosphorus	0 - 30 - 0 galons	0.0	0.0
Potasskan	0 - 0 - 52 pounds	0.0	0.0
Gypsum	pounds.	100.0	48.0
Line	polieized	0.0	0.0
	powdered	0.0	0.0
Sulfur	pounds	0.0	0.0
Magnesium	pounds	0.0	0.0
iron cheiate	gallons	0.0	0.0
	pounds	0.0	0.0
Manganese	galions	0.0	0.0
	pounds	0.0	0.0
Conventional Fe	rtilization		
Boost Natural		32	130.0
Boost		16.0	65.0
Boost Granular		5.0	2.4
Organic Mitorgan	inter	10.0	4.8
Mulch or income	rate organic matter	Yes	. 498

76.0 542.0 Very High 100.0 * Low 106.0 * Low 106.0 * Low	Ideal pH range for Other: 5.5	
160.0 * Low 106.0 * Low		
106.0 * Low		
BBG 0 * Low		
	Molybdenum (Mo)	0.0
(DM) 2.6 * Low	Nutrient Retention Capacity	5.5 Medium
1	Recommendations	
	Pounds or Gallons	Kg or Liters
ation	per 1000 sq. ft.	per 100 sg. m
30 - 0 - 0 gallons	0.7	2.7
38 - 0 - 0 gallons	5.0	2.4
0 - 30 - 0 gallons	0.0	0.0
0 - 0 - 52 pounds	2.0	1,0
		0.0
		36.0
		24.0
		0.0
		0.0
		0.0
		0.0
		0.0
	00	0.0
and the second se	10	203.2
		101.6
		4.0
		4.0
	20.0	
		pentensed 15.0 ponchenial 50.0 ponchenial 50.0 ponchenia 60.0 ponchenia 60.0 ponc

LOCATION #J			
Soil pH	6.1	Acceptable	Ideal pH range for Other: 5.5 to 6.5
Ntropen (ENR)	110.0		
Phosphorous (P)	152.0	Very High	
Potassium (K)	434.0	High	
Magnesium (Mg)	594.0	High	
Calcum (Ca)	4595.0	* Modury	

		Recommendations	
		Pounds or Gallons	Kg or Liters
Prescription Fer	fization	per 1000 sq. ft.	per 100 sg. m
Nitrogen	30 - 0 - 0 gallons	0.7	27
	38 - 0 - 0 gations	5.0	2.4
Phosphorus	0 - 30 - 0 gallons	0.0	0.0
Potasakum	0 - 0 - 52 pounds	0.0	0.0
Gypsum	pounds	100.0	48.0
Line	pelletized	0.0	0.0
	powdered	0.0	0.0
Sufur	pounds	0.0	0.0
Magnesium	pounds	0.0	0.0
iron chelater	galions	0.0	0.0
	pounds	0.0	0.0
Manganese	gallons	0.0	0.0
	pounds	0.0	0.0
Conventional Fe	rtilization		
Boost Natural		32	130.0
Boost		16.0	65.0
Boost Granular		5.0	2.4
Organic Miorganile		10.0	4.0

LOCATION #K

Soil pH	5.9	Acceptable	Ideal pH range for Other: 5.5 to 6.5
Ntropen (ENR)	110.0		
Phosphorous (P)	144.0	Very High	
Potassium (K)	436.0	High	
Magnesium (Mg)	674.0	Very High	
Calcum (Calc	5162.0	* Address over	

Ver

		Recommendations Pounds or Gallons	Ko or Liter
Prescription Fert	lization	per 1000 sq. ft.	per 100 sg r
Nitrogen	30 - 0 - 0 gallons	0.7	2
	38 - 0 - 0 gations	5.0	2
Photphonis	0 - 30 - 0 gallons	0.0	0
Potasskam	0 - 0 - 52 pounds	0.0	0
Gypsum	pounds	100.0	48
Lime	pelletized	0.0	0
	powdered	0.0	0
Sufur	pounds	0.0	0
Magnesium	pounds	0.0	0.
iron chetate	galions	0.0	0.
	pounds	0.0	0.
Manganese	gallons	0.0	0.
	pounds	0.0	0
Conventional Fe	rollization		
Boost Natural		32	130
Boost		16.0	65
Boost Granular		5.0	2
Organic Milorganite		10.0	4
Mulch or incorpo	rate organic matter	Ves	

5.9 Acceptabl Ideal pH range for Other: 5.5 to 6.5 110.0 120.0 Very High 500.0 Very High 516.0 High Ntrogen (ENR) Phosphorous (I

		Recommendations	
Prescription Fer	lization	Pounds or Gallons per 1000 sq. ft.	Kg or Liter per 100 sg i
Nitrogen	30 - 0 - 0 gallons	0.7	1
	38 - 0 - 0 gations	5.0	2
Photohona	0 - 30 - 0 gallons	0.0	0
Potasakam	0 - 0 - 52 pounds	0.0	0
Gypsum	pounds	100.0	48
Lime	pelletized	0.0	0
	powdered	0.0	0
Sufur	pounds	0.0	0
Magnesium	pounds	0.0	0
iron chetate	galions	0.0	0
	pounds	0.0	0
Manganese	galions	0.0	0
	pounds	0.0	0
Conventional Fe	rollization		
Boost Natural		32	130
Boost		16.0	65
Boost Granular		5.0	2
Organic Milorganile		10.0	4
Mulch or incorpo	rate organic matter	Yes	S

BULK DENSITY ANALYSIS LOCATION #1

Diagnosis: The texture and bulk density of your sample was as follows:

- Peat / Mulch .454 g/cc
- This soil is not compacted REMEDIAL TREATMENT RECOMMENDATIONS:

Fertilize according to soil analysis results is recommended

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provid moisture conservation and soil temperature moderation to improve tree vitality.

Diagnosis: The texture and bulk density of your sample was as follows: Sandy Loam / Sandy Clay - 1.166 g/cc This soil is not compacted.

- REMEDIAL TREATMENT RECOMMENDATIONS compaction is required on this tree
- Fertilize according to soil analysis results is recommended
- Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation and soil temperature moderation to improve tree vitality.

Diagnosis: The texture and bulk density of your sample was as follows: Loam / Sandy clay 1.308 g/cc

Sample is slightly compacted.

REMEDIAL TREATMENT RECOMMENDATIONS: Application of a 2 to 4⁺ thick layer of mulch from near the trunk to near the drip line of the tree will provide moisture conservation, soil emperature moderation and in the long run, to a reduction in bulk deavity. This treatment combined with prescription fertilization should help improve water uptake and promote tree grow

Soil moisture is a major factor in compacted soils and with declining trees. Compaction reduces penetration of water into the soil and reduces percolation out of the soil once water does get in. To monitor soil moisture at this site tensionnetes are recommended. A soil wetting agent may be used if the soil does not wet easily.

LOCATION #4

Diagnosis: The texture and bulk density of your sample was as follows: Peat / Mulch - .384 g/cc

This soil is not compacted.

REMEDIAL TREATMENT RECOMMENDATIONS: s required on th

Fertilize according to soil analysis results is recommended.

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soi isture conservation and soil temperature moderation to improve tree vitality LOCATION #5

Diagnosis: The texture and bulk density of your sample was as follows:

Sandy Loam / Sandy Clay - 1.046 g/cc This soil is not compacted.

REMEDIAL TREATMENT RECOMMENDATIONS

Fertilize according to soil analysis results is recommended

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil ture moderation to improve tree v

LOCATION #6

Diagnosis: The texture and bulk density of your sample was as follows:

Loam / Sandy clay 1.414 g/cc

Sample is slightly compacted.

REMEDIAL TREATMENT RECOMMENDATIONS: Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil reprintment of a " unk agree of much down included the function of the uncertainty and the second agree of the second sec

Soil moisture is a major factor in compacted soils and with declining trees. Compaction reduces penetration of water into the soil and reduces percolation out of the soil once water does get in. To monitor soil moisture at this site tensioneters are recommended. A soil wetting agent may be used if the soil does not wet easily.

LOCATION #7

Diagnosis: The texture and bulk density of your sample was as follows:

Sandy Loam / Sandy Clay - 1.170 g/cc

This soil is not compacted

REMEDIAL TREATMENT RECOMMENDATIONS: or compaction is required on this tree

Fertilize according to soil analysis results is recommended

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation and soil temperature moderation to improve tree vitality.

LOCATION #8

Diagnosis: The texture and bulk density of your sample was as follows:

Sandy Loam / Sandy clay 1.382 g/cc

Sample is slightly compacted.

RMEDIAL TREATMENT RECOMMENDATIONS: Application of a 2 to 4⁺ thick layer of much from near the trank to near the drip line of the tree will provide soil monitore conservation, soil temperature underation and in the long run, to a reduction in black density. This treatment combined with prescription fertilization should help improve water uptake and promote tree growth.

Soil moisture is a major factor in compacted soils and with declining trees. Compaction reduces penetration of water into the soil and reduces percolation out of the soil once water does get in. To monitor soil moisture at this tiet tensioneters are recommended. A soil wetting agent may be used if the soil does not wet easily.

Diagnosis: The texture and bulk density of your sample was as follows

Loam / Sandy clay 1.210 g/cc

Sample is slightly compacted

REMEDIAL TREATMENT RECOMMENDATIONS: Application of a 2 to 4⁺ thick layer of mulch from near the trank to near the drip line of the tree will provide soil moisture conservation, soil temperature moderation and in the long run, to a reduction in balk density. This treatment combined with prescription fertilization should help improve water uptake and promote tree growth.

Soil moisture is a major factor in compacted soils and with declining trees. Compaction reduces penetration of water into the soil and reduces percolation out of the soil once water does get in. To monitor soil moisture at this is te tensioneters are recommended. A soil wetting agent may be used if the soil does not wet easily.

LOCATION #10

Diagnosis: The texture and bulk density of your sample was as follows:

Sand / Loamy Sand - .929 g/cc

This soil is not compacted

REMEDIAL TREATMENT RECOMMENDATIONS:

Fertilize according to soil analysis results is recommended

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil maisture conservation and soil temperature moderation to improve tree vitality.

LOCATION #11

Diagnosis: The texture and bulk density of your sample was as follows:

Peat / Mulch - .590 g/cc

This soil is not compacted

REMEDIAL TREATMENT RECOMMENDATIONS

Fertilize according to soil analysis results is recommended

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation and soil temperature moderation to improve tree vitality.

LOCATION #12

Diagnosis: The texture and bulk density of your sample was as follows: Peat / Mulch - .441 g/cc This soil is not compacted

REMEDIAL TREATMENT RECOMMENDATIONS:

ent for compaction is required on this tre Fertilize according to soil analysis results is recommended.

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil *Test pit location and analysis by Bartlett Tree Experts.

Further information located in Appendix B of this report.

23

EXISTING SOILS ANALYSIS

SOIL MODIFICATIONS STUDY

Soil lying outside the area in the above plan diagram not recommended for soil modification (represented in light tan) are found to be healthier soils, while soil within the disturbed area (represented in dark brown) is found to be disturbed and not as healthy for planting growth. By overlaying existing tree canopies with this information, it becomes evident that the older trees, most of which are oaks, are located within the healthier soil zones that are not disturbed while younger trees with less canopy are located in disturbed soils. We can use this information for preserving healthy soils and making suggestions for where soil modifications should be made for future design and to help ensure healthy and long-term canopy for the site.

The health and size of areas outside the disturbed soils illustrate the importance of healthy soil conditions.

TREES WITHIN HEALTHY SOIL CONDITIONS

EXISTING TOPOGRAPHIC CONDITIONS

CURRENT TOPOGRAPHY

Current topography can be read for soil disturbance. Cut and fill slopes appear associated with paving throughout the park. This is particularly true at the perimeter where the walks and grades meet the street sidewalk edges. It appears that the streets were generally cut into the existing pre development grades as part of a larger scale grading scheme to create smooth street grade transitions from the ridge line parallel to Fayetteville Street and the lower lands east of the downtown area. In the middle portion of the site, the contours are highly irregular with minimum organizing features. Only the slopes in the parks east side seem to reflect a pre-development contour pattern. But even here fill soils were discovered.

Careful attention should be devoted to addressing the past cuts within the tree and trunk protection areas.

EXCESSIVE MULCH

The existing thick mats of mulch in the tree protection area is creating moisture competition and fosters vertical root growth effecting the health of the existing trees.

TRUNK PROTECTION CONFLICTS There are six areas that currently exist in which new paths were aggressively cut into the trunk protection areas.

TREE / PATH CONFLICTS

created by cutting into the root zones.

Currently there are many existing paths within the tree

protection areas. These traditionally built paths were

DISCONNECTED LAWN The current small lawn panels have neither the size nor the soil structure to accommodate the intensity of current or anticipated urban use.

WALLS AND UTILITY STRUCTURES

A numerous collection of deep foundation walls, utility structures, and utility lines currently exist within the tree and trunk protection areas. Existing violations to tree protection areas should be removed.

TREES FOR HAZARDOUS TREE REVIEW

This report has found 24 existing canopy trees that should be reviewed per potential impacts on the public safety.

EXISTING CONDITIONS CONCERNS

A number of different concerns and considerations have been found with the current conditions of the site of Moore Square. For the trees in particular, problems exist within the root space of the existing trees that the report illustrates and recommends to address for future site design. Below are other areas that are of concern for the current site that have been discovered through the analysis of existing site conditions impacted by such current site features such as the current paving, walls, utilities, street curbs.

Paving (all types)– Previous paving resulting from park redesigns imposed additional compaction and reduced pervious areas of the site. By locating new paving over old areas of paving, the sub-base can be reused without adding to root damage. New paving can be more pervious. Air-spade (specialized excavation tool) vertical mulching under the paving can reduce soil compaction and improve root space.

Walls, foundations and other structures created significant root damage during excavation and installation of the structures. Removal of the structures can impose additional damage. Where possible, existing structures or their footings can be reused. If not, the footings should be left in place.

Utility structures – Excavation for wires and supporting utility structures created significant root damage and soil disruption. The trees have to a great extent recovered from this damage. To the extent possible, the locations of these structures and supporting conduits could be left in place.

Street curb and sidewalks – The street grid and most of the street infrastructure was installed either before the existing trees were planted or during a period when the trees were young enough to survive the damage. The grades, paving and curbing can remain or be renovated with limited damage to the existing tree root system, provided the work is performed using low impact means and methods that is well supervised by a tree expert with authority to control the work.

Existing grades – Changes in grades, particularly cutting grades lower, has a very significant negative health impact on tree health. The design grades can maintain existing grades or adopt a fill soil only approach to grading within the tree protection area.

EXISTING CONDITIONS STATISTICS

3,778 SF	ASPHALT
1,415 SF	STONE DUST
I,227 SF	WALLS & FOUNDATIONS
2000 LB	ACORN & STRUCTURE
29,265 SF	CONCRETE PAVEMENT
1,114 SF	GRANITE CURB
169 SF	UTILITY STRUCTURES
28 SF	KIOSK BUILDING

PATH CONFLICTS WITHIN THE TRUNK PROTECTION AREA SHOULD BE IMPROVED

PATH AND WALL CONFLICTS WITHIN THE TRUNK PROTECTION AREA SHOULD BE IMPROVED

STORM DAMAGE HAS AFFECTED THE SAFETY OF CERTAIN TREES WITHIN THE SITE

STORM DAMAGE HAS AFFECTED THE SAFETY OF CERTAIN TREES WITHIN THE SITE

PATH CONFLICTS WITHIN THE TRUNK PROTECTION AREA SHOULD BE IMPROVED

WALLS AND PLANTERS WITHIN TREE AND TRUNK PROTECTION AREAS SHOULD BE REMOVED

PATH CONFLICTS WITHIN THE TRUNK PROTECTION AREA SHOULD BE IMPROVED

PATH CONFLICTS WITHIN THE TRUNK PROTECTION AREA SHOULD BE IMPROVED

OVER MULCHING AND UTILITY STRUCTURES WITH-IN TREE PROTECTION AREAS CAN DAMAGE TREES

EVENTS WITHIN TREE PROTECTION AREAS CAN DAMAGE EXISTING TREES

EXISTING LAWN CANNOT SUPPORT URBAN USE

OPEN PERIMETER ALLOWS FOR USES THAT CAN DAMAGE ROOT ZONES OF EXISTING TREES

EXISTING PATHS AND UTILITY LINES VIOLATE TREE AND TRUNK PROTECTION AREAS

EXISTING PATHS AND UTILITY LINES VIOLATE TREE AND TRUNK PROTECTION AREAS

EVENTS WITHIN TREE PROTECTION AREAS CAN DAMAGE EXISTING TREES

UTILITY STRUCTURES WITH TRADITIONAL FOUNDATIONS WITHIN TREE PROTECTION AREAS

OVER MULCHING AND UNRESTRICTED ACCESS TO SENSITIVE TREE PROTECTION AREAS

PATH CONFLICTS WITHIN THE TRUNK PROTECTION AREA SHOULD BE IMPROVED

TREE PROTECTION AREA DIAGRAM

TREE AREA PROTECTION DIAGRAM 2.6 ACRES/ 57% OF SITE

Trunk Base Condition Tree Structure **Tree Vigor** Age Class **Construction Tolerance** Hazard Evaluation Size Species

TREE RECOMMENDATIONS TREE PROTECTION AREA CALCULATIONS:

The City of Raleigh uses a formula of 1.5 feet of radius for each inch of trunk diameter to establish the Tree Protection Area. This approach is not necessary to successfully save every tree. It is an overly large protection area and assumes that nothing is done to modify normal construction or to mitigate damage. It does not take into account the differences in age of trees nor the differences species tolerance to withstand construction. The following section on tree recommendations uses a system of establishing tree and trunk protection areas to make recommendations for future preservation and modifications to enhance existing and plan for future tree plantings and design improvements.

This report recommends using the system developed by Nelda Metheny and lames Clark in their book "Trees and Development: A technical Guide to Preservation of Trees During Land Development". This book, published by the International Society of Arboriculture (ISA), is recognized as the best source of tree preservation information.

TREE PROTECTION AREAS

The MSCTS Tree Protection Areas were established in a multi-variable system grounded in data from the International Society of Arboriculture (ISA) for each existing canopy tree on the site. Each individual tree was carefully inspected and reviewed for its trunk base condition, structure, vigor, age class, construction tolerance, hazard evaluation, size, and species. All of these factors are evaluated with historical and contextual information in the creation of tree-specific Tree Protection and Trunk Protection Areas.

ESTABLISHING THE TREE PROTECTION AREA:

The size of the Tree Protection Area for each tree is calculated to guide the design and help assure the survival of the tree. Tree Protection Areas are typically interpreted as being areas of no construction activity. However, if remedial work to improve growing conditions before, during, and/or after the construction are undertaken, responsible construction methods are under tight controls and design guidelines that will protect the tree's vital systems are employed, construction may take place within this area with little to no impact to the tree. Reasonable practices include those that prepare the tree, protect the tree and soil from damage and provide for after care that mitigates any soil or root damage. These reasonable practices will be further elaborated on in the section "Tree Protection Plan".

> The MSCTS tree and trunk protection areas were determined by the team's nationally recognized tree expert through synthesis and analysis of multiple above and belowground factors.

31

ISA

The ISA approach starts by determining the tree's tolerance to withstand construction. An extensive research questionnaire, sent to arborists all over the United States, ranked hundreds of different tree species. The results of this questionnaire were tabulated and published in "Trees and Development". The system uses a ranking of good, moderate and poor tolerance to construction. Fortunately, most of the large trees on this site are classified as having good tolerance to construction.

The second step is to determine the tree age with three levels proposed. They were as follows; young trees; considered at less than 20% of their life expectancy, mature trees; between 20 and 80% of their life expectancy, and over-mature trees; those with less than 80% of their life expectancy remaining. For the purpose of this report, the research findings from the Bartlett Tree Arborist report were used to make the determination of age classification.

The third step is to determine the requirement of the radius of the Tree Protection Area in feet per inch of trunk diameter. In the ISA system, the radius generally ranges from 0.5 feet per inch of caliper to 1.25 feet per inch of trunk diameter. In only one case, the most restrictive condition, does the ISA method use 1.5 inch per inch of trunk diameter. The ISA system is as follows;

Using the above system, a radius of Tree Protection Area has been calculated for each large tree. One variation was used to further refine this approach. The above ISA system assumes that the tree's health (vigor) is in a normal condition and does not account for other mitigating factors often found at urban sites such as trunk base conditions, soil problems, drainage, or adjacent structures. The ISA system does suggest that these conditions be factored into the final distance. In making the Tree Protection Area calculations for the trees at Moore Square, some of the tree distance requirements were increased 0.25 feet per inch of trunk diameter to factor for observed conditions that would make the tree preservation more difficult. These trees are noted with an asterisk in the Tree Protection Area Ft/Inch column on the tree evaluation chart.

The methodology used to determine that a tree should be given the extra 0.25' / Inch in the rating was as follows.

-Any tree that was rated as Vigor – Poor.

- -Any tree that had two out of three categories
- (Tree Base, Structure, Vigor) in the lowest rating.
- -Any tree that had three out of three categories in the medium or low rating.

ISA RECOMMENDED:

Species Tolerance	Tree Age	Radius from the trunk in feet per inch of trunk diameter
Good	Young < 20% life expectancy	0.5'
	Mature 20-80% life expectancy	0.75'
	Over mature > 80% life expectancy	1.0'
Moderate	Young	0.75'
	Mature	1.0'
	Over mature	1.25'
Poor	Young	1.0'
	Mature	1.25'
	Over mature	1.5'

Using the above methodology, the radius of the Tree Protection Area for the mature trees ranges from 0.5 ft / inch to 1.5 ft / inch with only three (3) trees indicated as needing 1.5 ft. / inch according to Urban Trees and Soils. We can use these measurements for construction protection, but will still use the 1.5 ft / inch DBH in order to establish the Tree Conservation Area (TCA) as required by the City.

HAZARD TREE INVESTIGATION RECOMMENDATION

Large mature trees in close proximity to people may pose the risk of structural tree failure that can injure people using the park. The City of Raleigh is responsible for the monitoring and mitigation of hazardous conditions in the park and has been doing a good job of removing dead branches and stabilizing trees. However, trees are dynamic organisms with constantly changing structural conditions as they grow, adding weight and wind loading in some areas, and at the same time decay and added stress from wind and gravity is weakening the tree in other areas. Finding tree conditions that might be dangerous is a constant task in a population of trees of the size and age of the trees in Moore Square.

The action of the proposed major renovation of this park causes the City to take on added liability for these trees. It is assumed that during a facility wide reconstruction, all systems will be made as safe as possible and that the entire park will meet current codes and safety concerns upon completion. This puts added requirements on the trees to be evaluated for defects and to mitigate these defects even to the point of removing hazardous trees.

For this reason, it is advised that the City conduct a hazard tree evaluation for any tree that may have indications of possible hazardous conditions. During the initial tree evaluation of the park, 24 trees were identified as being candidates for further hazard tree evaluation. These trees are noted in the Summary Tree Evaluation Data to follow.

The City has responded to the suggestion to evaluate these trees for hazardous conditions by undertaking an evaluation. They found that except for tree #2, a large Willow Oak in the south east corner of the site, all the trees recommended for evaluation can be retained with suggested mitigations. Tree #2 is recommended to be removed.

TREES RECOMMENDED FOR HAZARDOUS TREE REVIEW CHART

Tree #	Botanical Name	DBH	Tree #	Common Name	DBH
1	Quercus michauxii	52	30	Quercus phellos	33
2	Quercus phellos	65	32	Quercus phellos	48
3	Quercus michauxii	51	33	Quercus phellos	33
4	Quercus phellos	53	34	Quercus phellos	34
5	Quercus alba	35	42	Quercus phellos	36
6	Quercus phellos	43	45	Quercus phellos	44
7	Quercus phellos	29	48	Quercus phellos	34
10	Quercus phellos	9	62	Quercus phellos	18
11	Carya illinoensis	32	63	Quercus phellos	41
12	Acer saccharum	32	64	Quercus phellos	34
13	Quercus phellos	50	68	Quercus phellos	46
27	Quercus phellos	42			
29	Quercus alba	37			

TREE EVALUATION AND CONSTRUCTION PRECAUTIONS

Construction of many elements can be compatible with tree rooting areas if undertaken by skilled practitioners and contractors using techniques that are tree sensitive. It is important to note that the Master Plan Report is not a design document. It sets basic frameworks for design that now must be developed and refined to incorporate the many different site conditions and requirements that are typically left to the design development stage. This report is intended to guide the design development process from a tree preservation and soil health perspective.

Tree preservation during construction is essentially soil preservation. For this reason, tree preservation guidelines have focused on protecting large areas of ground surface around the tree. This area of protected ground is the Tree Protection Area.

At the tree's trunk, there is typically a distinct trunk flair, an enlarged area of wood that supports the tree right at the ground line. Below the ground and trunk flare, large roots form to support the tree and further divide into smaller roots farther from the tree that collect the water and nutrients that the tree needs. The most important part of these roots are generally considered the area within the first 4-10 feet from the trunk called, the Zone of Rapid Taper roots. The Zone of Rapid Taper roots and the trunk flair together must receive special consideration to protect them from damage. (This area is also the place where most root / paving conflicts begin and paving within this area must take these conflict into consideration. This area is the Trunk Base Protection Area.)

Often the Tree Protection Area is interpreted as a place where no construction activity should take place. This is an incorrect interpretation. Construction of many types often occurs in this area with no consequences to the tree's long-term health. However, construction must be designed and executed by professionals who are expert in tree preservation and working around trees. It is analogous to having surgery by someone not trained in surgery. Even a trained general practitioner might not be the right person for particular procedures. The more technical the operation, the more likely you are to want to find a specialist. It is entirely possible to construct the elements of the Master Plan, with the appropriate design development refinements in their size, materials, elevations, and locations, and find the mature tree population in better condition that it is today if the guidelines set in this report are to be correctly appropriated.

TREE PROTECTION PLAN

Protecting a tree during construction requires multiple levels of approaches that go far beyond simply fencing the area of protection. A tree protection plan is required that begins prior to the start of construction and carries on well past the end of construction. The plan will have parts that must be implemented by the City. Parts of the plan will impact the design process and parts that will become a part of the construction documents. Portions of the plan will become part of the park's long-term management plan.

If properly developed and implemented, the result of the Tree Protection Plan reveals that within the lifespan of the existing mature trees on the site, their health is likely not only to be healthier after the construction than before, but also their life expectancy should increase. Each part of the plan not only protects the trees from damage, but also will improve growing conditions and mitigate existing conditions in ways that would likely not be possible under current park

ASSESSMENT PLAN DIAGRAM

management budgets.

The following is the outline for the tree protection plan, presented as a series of general concepts that will guide the development of specific recommendations for each tree as the details of the design and construction process develops. The plan has four parts. Pre-construction requirements; Design and construction documents requirements; Construction requirements.

TREE CONSERVATION AREA

TCA will still be part of the design development phase. Information from this report and further design development will establish the locations of TCA as required by Raleigh Tree Conservation Ordinance.

PRE-CONSTRUCTION REQUIREMENTS:

I. Evaluate the existing tree conditions.

2. Establish Tree Protection Area and Trunk Base Protection Area for each tree.

Perform a Hazard Tree Evaluation for each mature tree and develop tree mitigation requirements for all conditions encountered. Implement the mitigation requirements.
 Establish and fund a pre-construction tree management budget to implement the pre-construction portion of the Tree Protection Plan. This needs to be undertaken as soon as possible and is NOT part of the construction budget.

5. Identify the primary tree care manager within the Parks Department to oversee the Tree Protection Plan.

6. Develop and implement a tree health management contract with an Arborist to monitor and treat all disease and insect problems; prune trees to remove deadwood and structural defects.

7. Apply Cambistat to all mature trees. Cambistat shall be applied as a tree growth regulator that is proven highly effective in reducing growth rates and stimulating fine root production, and shall be used in preparation for construction. Note that Cambistat requires a minimum of one year to begin to have positive effects on the tree and needs to be applied every three years. Ongoing applications of Cambistat should remain a City responsibility during the construction to assure that consistent application requirements are followed.

8. Apply any nutrients recommended by the soil test to bring soils in the root zone to optimum nutrient levels before, during and after the construction. Ongoing soil testing and applications of nutrient should remain a City responsibility during the construction to assure that consistent application requirements are followed.

9. During periods of prolonged drought prior to construction, develop and implement a root zone watering program for all mature trees to remain to assure that they are not water stressed. 10. Establish TCA (Tree Conservation Area) to be reviewed by Raleigh Forestry Specialist.

DESIGN AND CONSTRUCTION DOCUMENTS REQUIREMENTS:

I. Insert into the design drawings the limits of the Tree Protection Area and Trunk Base Protection Area for each tree. These limits should be included in every site construction plan document of each of design discipline to assure that all design consultants understand the importance of these areas and when their work is impacting these zones.

2. Develop a Soils Improvement Plan, soil details and soil specifications for all areas of the park that retains good soils; protects root zone soils from damage; and improves soil within and outside the Tree Protection Area for future growth of each tree.

3. Develop Tree Protection Plans, details and specifications that detail specific requirements for tree protection including fencing, mulching/matting, operations allowed within the Tree protection Area, trenching/ grading techniques, watering requirements, disease and insect controls, pruning,

and monitoring and mitigation of inadvertent damage.

4. Establish the cost to the contractor for various levels of tree damage including placing an ISA based value on each tree in the event that it is damaged to the point where the tree's long-term health is compromised by damage caused by the contractor.

5. Protect soil within the Tree Protection Area from compaction by fencing and mulch/geogrid matting.

6. Grading cuts should be minimized or when required made with an air spade and vactor equipment. Roots larger than I inch in diameter encountered during grading must be cut only with the approval of the project Arborist.

7. Grading fills must be preceded by removal of organic layers or turf. Undertake airspade invigoration of the existing soil that may include mixing existing organic layers with the sub-soil below and mixing with the new soil to be installed. Fill soil in the Tree Protection Area must be sandy loams place by low compaction impact procedures. New grades must continue to provide for drainage and aeration of the soil. If fills exceed 12 inches, deep aeration layers between the fill and existing grades must be included.

8. Utility line trenches within the Tree Protection Area should be avoided and lines redirected around the Tree Protection Area. Where unavoidable new utility lines shall be installed with directional boring technology; or the use of airspade / vactor equipment.

9. New paving should be placed on geogrid / aggregate bases. Walls and other structures should employ pier and beam bridging with designs that are flexible to move piers or beams to avoid large roots. All excavation must use airspade / vactor equipment. The Arborist must approve any roots to be cut over 1" in diameter.

10. All new planting within the Tree Protection Area must be performed using planting concepts that require the least amount of disturbance. Bare root planting and planting with airspade digging tool is preferred. Spacing of plants should be as wide as practical and allow plants to grow together. Tightly spaced plants to make instant effects of the planting must be avoided. II.TCA plat approval.

CONSTRUCTION REQUIREMENTS:

I. Retain an independent Arborist to monitor all tree protection provisions during the extent of the work. The Arborist must have access to the site frequently enough to make reasonable and timely review of the work. The cost of this provision must be included in the project budget.

2. Implement the requirements in the Tree Protection Plan provisions.

3. Implement the requirements in the Soil Plan provisions

4. The provisions of the Tree Protection Plan must be flexible to accommodate all factors in the construction sequence. The project Arborist must approve all modifications to the plan.

5. Provide supplemental water to the root zone during the construction.

Post construction requirements:

I. Assure that there is a well documented and understood transfer point of tree maintenance responsibility from contractor to the City at the end of the construction.

2. Continue supplemental watering of the root zone as required for a minimum of 5 years.

3. Continue Cambistat and nutrient treatments as required for a minimum of 5 years after the end of construction.

4. Continue intensive tree health monitoring for a minimum of 10 years.

TREES RECOMMENDED FOR PRUNING

Tree #	Common Name	DBH	Tree Care Priority	Risk Rating	Clean	Thin	Structural
43	Pecan	36		low	yes		
3	Swamp White Oak	51			yes		
11	Pecan	32	****		yes	yes	yes
21	Shumard Oak	6	I		••••		yes
36	Willow Oak	10					yes
38	Hybrid Elm	7					yes
45	Willow Oak	44	1		yes		
49	Shumard Oak	3	I		••••		yes
100	Palmetto	7	I		yes		
4	Willow Oak	53	2		yes		
6	Willow Oak	43	2		yes		
16	Japanese Maple	8	2		yes		
17	Japanese Maple	4	2		yes		
18	Paperbark Maple	8	2		yes		
31	Pin Oak	18	2			yes	yes
73	Swamp White Oak	8	2				yes
56	Japanese Maple	6	3		yes		
72	Swamp White Oak	8	3			••••	yes

TREES RECOMMENDED FOR ROOT COLLAR EXCAVATIONS

Tree #	Common Name	DBH	Tree #	Common Name	DBH
4	Willow Oak	53	31	Pin Oak	18
5	White Oak	35	35	Trident Maple	3
6	Willow Oak	43	36	Willow Oak	10
8	Flowering Dogwood	4	49	Shumard Oak	3
11	Pecan	32	50	Yoshino Cherry	11
12	Sugar Maple	32	52	Red Maple	15
13	Willow Oak	50	53	Blue Spruce	7
15	Pecan	27	59	Japanese Maple	25
16	Japanese Maple	8	62	Willow Oak	18
17	Japanese Maple	4	65	Swamp White Oak	40
18	Paperbark Maple	8	67	Deodar Cedar	16
20	Holly	9	69	Willow Oak	43
21	Shumard Oak	6	70	Nuttall Oak	4
23	Pin Oak	20	72	Swamp White Oak	8
30	Willow Oak	33	30	Swamp White Oak	8

TREES RECOMMENDED FOR PLANT HEALTH CARE

Tree #	Common Name	DBH	Pest or Disease
1	Swamp White Oak	52	cankers
23	Pin Oak	20	cankers
55	Japanese Maple	15	scale
66	Willow Oak	46	borers
67	Dodar Cedar	16	borers
70	Nuttal Oak	4	mites
71	Red Maple	5	cankers

Conventionally implemented and constructed tree disturbing activities should not be permitted within the tree protection and trunk protection areas.

Design detailing, specifications, and construction observation involving modifications and improvements to the tree protection areas should be overseen by a nationally recognized tree expert and certified master Arborist.

Any modifications within the tree protection area should be reviewed on a tree by tree basis and every effort should be taken to minimize the impact to the existing root zones.

UNAPPROVED HIGH - IMPACT PATH SYSTEM

APPROVED LOW - IMPACT PATH SYSTEM

UNAPPROVED HIGH - IMPACT ABOVE 12" FILL TECHNIQUE

UNAPPROVED CONVENTIONAL FILL BELOW 12"

UNAPPROVED CONVENTIONAL GRANULAR PAVEMENT

UNAPPROVED CONVENTIONAL WALL CONSTRUCTION

APPROVED LOW - IMPACT WALL CONCEPT

UNAPPROVED IMPACT TO TREE PROTECTION AREA

TARGET AREAS FOR PLANTING NEW CANOPY TREES

Long-term CANOPY MANAGEMENT

In addition to existing tree analysis, a 100-year growth and decline projection study was undertaken to evaluate the viability of the existing grove. A detailed set of criteria for these studies was developed in close collaboration with Urban Trees + Soils that included canopy growth, trunk growth tree loss and parameters of declining trees. Although it is impossible to predict the exact future of tree growth and decline, this study was undertaken as a means to establish a reasonable understanding of the likely trends that will occur over the next 100 years. The results from this analysis showed that over 60% of the existing trees will expire in the next 50 years and 90% in the next 100 years. It is critical that the Moore Square improvements anticipate these trends and begin a thoughtful plan to introduce new canopy trees in target areas to ensure that, as the mature canopy trees naturally begin to decline and expire, there are new trees growing in to take their place. The study also found that the relative low diversity of tree age is the primary reason for the two anticipated large waves of tree decline. When considering planting design strategies for Moore Square, it is recommended that a similar long-term approach be utilized to increase the age diversity of the grove.

The Master Plan is not only working to preserve the significant trees, but to also respect their future growth, decline, death and replacement. Trees are living organisms that will grow and decline and die. In order to determine the impact of future changes in the canopy, it is necessary to make assumptions about this process. The following are the assumptions used to develop canopy growth studies over time. It is recognized that these assumptions are very general and that individual trees will not respond in this precise manner. However, the studies do assist in providing a basis for predicting park canopy changes and where and when new trees might be added to the park.

For the purposes of this study, only canopy trees that have the potential to contribute to the enhancement of the perimeter grove were included in this study.

The long-term management of any the perimeter grove of canopy trees should be a central driver of a new planting strategy.

Increasing the age diversity of the Grove should be a long-term goal of the longterm canopy management for Moore Square.

●12 new canopy trees planted at 3" DBH

100 YEAR TREE PLANTING STRATEGY

2014 Canopy Tree Planting 2034 Canopy Tree Planting 2054 Canopy Tree Planting 2074 Canopy Tree Planting 2094 Canopy Tree Planting 2114 Canopy Tree Planting

LONG-TERM GROWTH PROJECTIONS AND RECOMMENDATIONS

The results from the tree analysis of existing conditions and future projections showed that over 60% of the existing trees will expire in the next 50 years and 90% in the next 100 years. It is critical that the Moore Square improvements anticipate these trends and begin a thoughtful plan to introduce new canopy trees in target areas to ensure that as the mature canopy trees naturally begin to decline and expire, there are new trees growing in to take their place. The study also found that the relatively low diversity of tree age is the primary reason for the two anticipated large waves of tree decline. When considering planting design strategies for Moore Square, it is recommended that a similar long-term approach be unitized to increase the age diversity of the Grove.

The Master Plan is not only working to preserve the significant trees, but to also respect their future growth, decline, death and replacement. Trees are living organisms that will grow and decline and die. In order to determine the impact of future changes in the canopy, it is necessary to make assumptions about this process. The following are the assumptions used to develop canopy growth studies over time. It is recognized that these assumptions are very general and that individual trees will not respond in this precise manner. However, the studies do assist in providing a basis for predicting park canopy changes and where and when new trees might be added to the park.

Canopy growth and decline should be reviewed every five years to update and revise the management strategy.

2034 20 YEAR PLANTING

- 32 existing canopy trees remain ● One new canopy tree planted at 3" DBH
- Six trees reach maximum lifespan
- Initial planting reaches 20 years old

2054 40 YEAR PLANTING

30 existing canopy trees remain

- One new canopy tree planted at 3" DBH
- One 100-year-old fair vigor tree is lost
- One 30-year-old fair vigor tree is lost due to competition Initial planting reaches 40 years old

2074 60 YEAR PLANTING

14 existing canopy trees remain
15 trees reach maximum lifespan
Five new canopy trees planted at 3" DBH Initial planting reaches 60 years old

100 YEAR TREE PLANTING STRATEGY

2094 80 YEAR PLANTING

- Eight existing canopy trees remain
 Two new canopy tree planted at 3" DBH
- One 50-vear-old tree is lost
- Three 30-year-old fair vigor trees are lost
- Initial planting reaches 80 years old

2114 100 YEAR PLANTING

Four existing canopy trees remain
One new canopy tree planted at 3" DBH
Four trees reach maximum lifespan Initial planting reaches 100 years old

PROJECTION CRITERIA

1. EXISTING CANOPY GROWTH

1.1) Canopy of good vigor trees expands 10" radius a year for the first 40 years
1.2) Canopy of good vigor trees expands 8" radius a year between 40 and 80 years old
1.3) Canopy of good vigor trees expands 6" radius after 80 years old and beyond
1.4) Canopy of fair vigor trees expands 8" radius a year for the first 40 years
1.5) Canopy of fair vigor trees expands 6" radius a year between 40 and 80 years old
1.6) Canopy of fair vigor trees expands 6" radius a year after 80 years old and beyond
1.7) Canopy of poor vigor trees expands 6" radius a year for the first 40 years
1.8) Canopy of poor vigor trees expands 4" radius a year for the first 40 years
1.9) Canopy of poor vigor trees expands 2" radius a year after 80 years old and beyond

2. TRUNK GROWTH

- 2.1) Trunk of good vigor trees will expands 1/2" radius a year
- 2.2) Trunk of fair vigor trees expands 1/4" radius a year
- 2.3) Trunk of poor vigor trees expands 1/8" radius a year

3. CANOPY TREE LOSS

- 3.1) Canopy trees will have a lifespan of approximately 150 years
- 3.2) In 20 years 100% of the poor vigor trees will be lost
- 3.3) In 40 years 20% of the fair vigor trees will be lost
- 3.4) In 60 years 50% of the fair vigor and 10% of the good vigor trees will be lost 3.5) In 80 years 80% of the fair vigor trees and 30% of the good vigor trees will be lost
- 3.6)100 years 100% of the fair vigor trees and 70% of the good vigor trees will be lost

4. PARAMETERS OF IDENTIFYING DECLINING TREES

- 4.1) Canopy trees with lower structure rating and trunk sizes will decline faster
- 4.2) Older canopy trees will be lost before younger canopy trees
- 4.3) Trees experiencing excessive canopy competition will decline faster

5. NEW TREE GROWTH

- 5.1) Canopy trees will have a lifespan of approximately 150 years
- 5.2) New canopy trees will be planted at 3" caliper dbh
- 5.3) 100% of new canopy tress will be considered good vigor
- 5.4) Canopies with compress and elongate when in competition

SOIL RECOMMENDATIONS

HIGH PERFORMANCE LAWN

The creation of a high performance lawn is recommended for the central lawn area, which will improve the Square's ability to absorb reasonable levels of high intensity use without damaging the lawn. A new soil profile will be established in the central lawn area that includes a higher percentage of sand, less organics, and a subsurface drainage system. The new central lawn is located in an area that is largely outside of the Tree Protection Area minimizing the impact to existing root zones through soil re mediation and drainage lines. The new higher performance central lawn will require organic fertilization several times a year. As the design develops and the future Moore Square event program is established, the lawn management plan may include resting periods. This is a common practice employed by high use urban landscapes such as Central Park and Battery Park City in New York. This technique involves temporarily fencing off the lawn areas for prescribed time periods, often in the winter and wet seasons to allow the lawn to naturally recover and prevent damage of wet and dormant lawns. To ensure the highest performance the lawn will require yearly aeration from a standard core aerator.

The number and timing of events must be carefully regulated. For example, at Central Park's "Great Lawn" the number of large events is limited to 5 events a year and includes a winter long rest period. The lawn is further closed to use when the turf manager deems that turf stress requires additional rest periods.

NATIVE PERIMETER (UNDERSTORY AND SHRUB PLANTING AREAS)

Careful attention should be made to the selection of shrubs, understory trees, and ground covers for the perimeter native planting areas. Minimizing impact to existing root zones and

PLANTING RECOMMENDATIONS

moisture competition should be a major driver of plant selection in these areas. Bare root planting with an air spade installation of new shrubs and trees is highly recommended when planting in Tree Protection Areas. Air spade installation involves digging and loosening the soil for planting by using an air spade rather than a shovel. This technique offers the best possible establishment for growing conditions and minimizes damage to existing root zones. Permanent irrigation in these areas is not recommended. However, surface distribution systems should be considered during establishment periods. The enhanced growing conditions accomplished by the removal of moisture competition from the existing mulch beds and soil amendments are designed to be largely a self-maintaining system. However, a one inch +/- topdressing of compost should be considered once a year to enhance proper growing vigor in these areas.

NEW CANOPY TREE PLANTING

A new canopy tree planting strategy was developed out of multiple 100-year growth and decline projections from multi-criteria modeling. The criteria for the projections included tree vigor, age, structure, competition, trunk size, structure, spacing, and historical research. The findings of these studies identified strategic areas to target canopy replacement.

TURF MANAGEMENT

Trees and turf are also difficult partners, and problems increase with the added compaction of people. Serious consideration on solving the shade, event, and turf conflicts must accompany any park redesign. Recent study of the national Mall turf in Washington D.C. indicates that event structures, turf abrasion, and events on saturated soil contribute the majority of turf damage rather than compaction from park users.

SOIL ADJUSTMENTS

Recommended soil adjustments include minor perimeter enhancement, a new high performance turf profile, and central soil modifications.

MANAGING ACCESS

The new perimeter edge discourages occupation and trespassing over sensitive root zones. Proper dignified entrances invite entrance and control movement.

NEW INFRASTRUCTURE It is of critical importance that new infrastructure needed for park improvements respect the tree and trunk protection areas and avoid excavation of new utility lines whenever possible.

RECYCLE EXISTING PATHS New paths should re-use existing path layout areas, especially when crossing tree and trunk protection areas.

UTILIZE LOW-IMPACT PATH SYSTEMS Low-impact above ground path systems as described in this report should be used when paths enter tree protection areas.

NATIVE PERIMETER PLANTING

The native perimeter low shrub and understory planting around the perimeter should incorporate bare root planting with an air spade. Low competition species should be planted within the tree protection areas.

AVOID TRUNK PROTECTION AREAS New path layouts should maximize distance from tree protection areas.

LOCATE LANDFORM OUTSIDE OF TPA The central landform and utility core should be constructed above existing grade and located outside of the tree and trunk protection areas.

INTRODUCE HIGH PERFORMANCE LAWN A high performance turf system should be introduced in the central lawn area to accommodate a higher intensity of use and events.

DESIGN RECOMMENDATIONS

PAVING, STRUCTURES AND DETAILING

An important goal of proper tree preservation strategies is acknowledging and anticipating the movement and change that occurs within the root zones of large trees. This inevitable movement should be taken into consideration during the development of the design and detailing. When possible, new design elements should re-use existing areas of impact to Tree Protection Areas. Areas of existing impact within the Tree Protection Areas include existing path, walls, buildings, and raised planters. This practice will minimize impact to existing root zones.

UTILITIES

New utility lines should be located outside of the Tree Protection Areas when possible. In areas that require new utility lines in Tree Protection Areas, all care should be taken to minimize impact to these sensitive areas. Locating utilities above the existing grade within low-impact walkway systems is recommended where possible. This study also strongly approves the suggested above-ground utility core located within the tilted lawn landform proposed by the 2010 Moore Square Master Plan. This concept centrally locates the utilities in an area out of the Tree Protection Areas and prevents the need for excavation by locating the core above the existing grade within the landform. By centrally locating the utility core in the center of the site, the utility plans can employ a radial system that minimizes the cross cutting of root zones. New utility lines should enter the site through the northern mid-block plaza area, the southeast corner, and the southwest corner if needed. Wet utilities will exit the site through the southeast corner which is also the low point of the site.

MSCTS DESIGN PRINCIPLES

I. The long-term preservation and enhancement of the perimeter canopy trees should be a top priority for future design improvements to Moore Square.

2. The revitalization of Moore Square should leave the growing conditions of the trees in better condition than what currently exists.

2. All improvements to Moore Square should follow the MSCTS design parameters.

3. Future design development for Moore Square should synthesize the approved Master Plan concept and the MSCTS.

CONCLUSION AND NEXT STEPS

The conception of the Moore Square Comprehensive Tree Strategy (MSCTS) was proposed as a means to ensure that the long-term preservation and enhancement of the existing Oak Grove drives future design efforts. Traditionally, such a highly detailed existing analysis is undertaken late in the design process often associated with actual construction. However, given the importance of this project and the central role that tree preservation is to this project, the design team felt it critical that such a study be conducted before beginning the schematic design phase. Key to maintaining this commitment is securing all possible technical information on the existing trees and soils before the formal design process begins.

Through an intensive analysis of existing conditions, trees, soils, topography and carefully examined to produce a set of criteria for projecting into the future and providing design parameters to preserve and enhance the Square well into the future. With more than have of the trees as oaks and a strong character defining perimeter, maintaining the tree canopy is critical to the park improvement plans. This report sets the limits of the Tree and Trunk Protection areas and through projections studies of future tree growth and expirations, recommends a strategy for planting. Over the next 100 years. The results from the analysis showed that over 60% of the existing trees will expire in the next 50 years and 90% in the next 100 years. It is critical that the Moore Square improvements anticipate these trends and begin a thoughtful plan to introduce new canopy trees in target areas to ensure that as the mature canopy trees naturally begin to decline and expire, there are new trees growing in to take their place. The study also found that the relatively low diversity of tree age is the primary reason for the two anticipated large waves of tree decline. When considering planting design strategies for Moore Square, it is recommended that a similar long-term approach be unitized to increase the age diversity of the grove.

Through an in-depth series of studies and analysis done of soils, combined with overlaying existing tree canopies with this information, it becomes evident that the older trees, most of which are oaks, are located within the healthier soil zone that is not disturbed while younger trees with less canopy are located in disturbed soils. This information for preserving healthy soils leads to suggesting making soil modifications in the center of the site. The creation of a high performance lawn is recommended for the central lawn area, which will improve the Square's ability to absorb reasonable levels of high intensity use without damaging the lawn. A new soil profile will be established in the central lawn area that includes a higher percentage of sand, less organics, and a subsurface drainage system. The new central lawn is located in an area that is largely outside of the Tree Protection Area minimizing the impact to existing root zones through soil re mediation and drainage lines among other considerations. Relative to topography, several areas outlined in the report indicate areas for consideration.

After detailed analysis this study has found that with minor adjustments the 2010 Master Plan is an entirely feasible concept in regards to the protection and enhancement of the existing trees. It is assumed that when detailed design begins that the design team will build off the recommendations of the MSCTS to learn and develop further techniques that ensure the preservation and health of the existing grove is a major driver of all design decisions. Please see the following set of general recommendations and each section for more specific recommendations for moving forward.

GENERAL RECOMMENDATIONS

 Conventionally implemented tree disturbing activities should not be permitted within the tree protection area.
 Limited modifications within the tree protection area that employ low-impact construction techniques are permitted.

3. Detailing, specifications, and construction that involves modifications within the tree protection area should be overseen by nationally recognized tree expert and certified master Arborist.

4. Existing violations of the tree protection area, tree disturbing uses, and problematic site arrangement should be corrected with through improvements to Moore Square.

5. Oaks should be considered for new canopy tree planting.6. New tree planting should be informed by the long-term canopy management strategy and reviewed every five years after construction.

7. Increasing the age diversity of the canopy should be a priority of long-term canopy management.

8. Strict low-impact tree preservation specifications must be properly outlined and tree preservation manager should be identified in all areas of the construction and given top authority to enforce proper implementation of specifications.

9. City of Raleigh tree conservation parameters requiring conservation of 10% of the site should be followed.
10. Excessive mulch and open vehicular and pedestrian access within the tree protection area should be reduced.
11. Pre-construction tree preparation should be implemented according to the MSCTS.

12. When possible, new paths should re-use existing path locations to reduce disturbance within the tree protection area except when paths are within the trunk protection area.

13.A high-performance lawn system and engineered soils should be considered to improve lawn health.

14. Trees that contribute to the perimeter grove canopy should be given the highest priority for preservation, enhancement, and new planting.

APPENDIX A MOORE SQUARE TREE AND SOIL EVALUATIONS URBAN TREES + SOILS

Moore Square Tree Evaluation

Raleigh, North Carolina

October 29, 2012

Moore Square, Raleigh, North Carolina Tree Evaluations and Recommendations Draft 10 25 12

Urban Trees + Soils

Introduction

Moore Square has nearly 70 trees, the majority of which are mature specimens. They are the soul of the park and treasured by the citizens of Raleigh for their green canopy at the perimeter of the park. Maintaining this canopy is critical to the park improvement plans.

The current master plan concepts show places where alterations are proposed in areas that are likely to fall within areas normally considered as part of the trees root zone. This report will set the limits of the Tree Protection Areas, but also indicate what are the most critical things to do and not to do within this area.

Construction of many elements can be compatible with tree rooting areas if undertaken by skilled practitioners and contractors using techniques that are tree sensitive. It is important to note that the Master Plan Report is not a design document. It sets basic frameworks for design that now must be developed and refined to incorporate the many different site conditions and requirements that are typically left to the design development stage. This report is intended to guide the design development process from a tree preservation perspective.

Tree preservation during construction is essentially soil preservation. For this reason, tree preservation guidelines have focused on protecting large areas of ground surface around the tree. This area of protected ground is the **Tree Protection Area**.

At the tree's trunk, there is typically a distinct trunk flair, an enlarged area of wood that supports the tree right at the ground line. Below the ground and trunk flare, large roots form to support the tree and further divide into smaller roots further from the tree that collect the water and nutrients that the tree needs. The most important part of these roots are generally considered the area within the first 4-10 feet from the trunk called the Zone of Rapid Taper roots. The zone of rapid taper roots and the trunk flair together are must receive special consideration to protect them from damage. This area is also the place where most root / paving conflicts begin and paving within this area must take these conflict into consideration. This area is the **Trunk Base Protection Area**.

Often the Tree Protection Area is interpreted as a place where no construction activity should take place. This is an incorrect interpretation. Construction of many types often occurs in this area with no consequences to the tree's long-term health. However, construction must be designed and executed by professionals who are expert in tree preservation and working around trees. It is analogous to having surgery by some one not trained in surgery. Even a trained

General practitioner might not be the right person for particular procedures. The more technical the operation the more likely you are to want to find a specialist. It is entirely possible to construct the elements of the Master Plan, with of course appropriate design development refinements in their size, materials, elevations, and locations, and find the mature tree population in better condition that it is today.

Tree evaluations

There have been a number of tree evaluations undertaken for the trees in Moore Square. The City of Raleigh provided the design team with a tree evaluation at the beginning of the project. Jeff Kish of Bartlett Tree Experts, a consultant to the design team made initial evaluations of each tree. These first two evaluations were focused on general tree health.

Urban Trees + Soils, the design team's soil and tree consultant made an additional survey. This survey looked at the trees from the perspective of the trees ability to survive construction, including the trees vigor, structure and the condition of the trees base relative to designing paving and other structures in close proximity to the tree. The goal of this survey was to obtain data to use in calculating the Tree Protection Area and the Trunk Base Protection Area; and to make recommendations on the trees ability to withstand construction impacts.

Note that only the sites large, mature trees were evaluated for construction impact tolerance. There are 37 large mature trees out of a total of approximately 68 existing trees in Moore Square. The remaining smaller trees at the site will be relatively easy to work around where they are determined to be preserved.

The following is the methodology for the Urban Trees + Soils evaluations:

Trunk base evaluation:

This evaluation determines the degree of difficulty in working near the base of the tree. The Trunk Base evaluation is then used to set the **Trunk Base Protection Area**. This area, close to the base of the tree is the area where even minor disturbance may severely injure the tree.

Trunk Base Protection Area: The distance new paving should be kept away from the trunk or where special construction is required to eliminate damage to roots and bark. This area must receive special protection treatment over and above the requirements of the larger Tree Protection Area. The size of the Trunk Base Protection Area is an initial recommendation. The distance may be decreased if special details such as flexible paving surfaces or bridging design are utilized, or may need to be larger due to topography or surface rooting conditions. These stand off dimensions assume that no cut is required to construct the paving in this area. In areas where paving is already inside of the stand off zone, such as along Blount Street, new paving may be installed

provided that the limit of paving is not brought closer to the tree or the paving section deeper than the existing paving.

Trunk base evaluation classifications, criteria, and limits of the Trunk Base Protection Area (**TBPA**) are:

Normal: Reasonably size trunk flair proportion with little damage or other problems. **TBPA** *radius* from center of trunk – **1.5 times trunk diameter**.

Moderate: Larger size trunk flare, minor damage or other problem that may require special attention in the design. **TBPA** *radius* from center of trunk -2 times trunk diameter.

Difficult: Extra large trunk flare or significant surface roots, existing trunk flare damage and other issue that may need additional investigation and response during the design process. *Paving stand off radius* from center of trunk – **2.5** *times trunk diameter*.

Tree Structure evaluation:

This evaluation notes observed problems with branch structure or tree stability. Tree structure is critical to the long-term success of a tree and may be a significant factor in determining if a tree is a good candidate for tree preservation.

Tree structure evaluation criteria and classifications are:

Good: No observed problems

Fair: Minor branch conflicts such as co-dominant leaders that are easily modified.

Poor: Significant branch conflicts such as co-dominant leaders that are not easily modified, dead portions of trees, asymmetrical canopies or trunk leans.

Tree Vigor evaluation:

This evaluation records tree growth vigor as determined by leaf color, density and distribution in the canopy. A trees vigor is a critical indicator of a trees ability to survive root loss.

Good: Normal leaf color, size and distribution

Fair: Observable variation from normal leaf color, density and distribution in the canopy. Minor twig dieback.

Poor: Significant variation form normal leaf color, density and distribution in the canopy. Significant twig dieback.

Hazard tree investigation recommendation:

Large mature trees in close proximity to people may pose the risk of structural tree failure that can injure people using the park. The City of Raleigh is responsible for the monitoring and mitigation of hazardous conditions in the park and has been doing a good job of removing dead branches and stabilizing trees. However, trees are dynamic organisms who's structural conditions change constantly as the tree grows and adds weight and wind loading in some areas while at the same time decay and added stress from wind and gravity is weakening the tree in other areas. Finding tree conditions that might be dangerous is a constant task in a population of trees of the size and age of the trees in Moore Square.

The action of the proposed major renovation of this park causes the city to take on added liability for these trees. It is assumed, that during a facility wide reconstruction, all systems will be made as safe as possible and that the entire park will meet current codes and safety concerns upon completion. This puts added requirements on the trees to be evaluated for defects and to mitigate these defects even to the point of removing hazardous trees.

For this reason, it is advised that the city conduct a hazard tree evaluation for any tree that may have indications of possible hazardous conditions. During the initial tree evaluation of the park 24 trees were identified as being candidates for further hazard tree evaluation. These trees are noted in the Summary tree Evaluation Data.

Apparently the City does not have a person on staff who is ISA certified in hazard tree evaluation to evaluate the trees using the ISA Hazard Tree Evaluation method. They do have an alternative method to evaluate trees which is apparently has proven effective to reasonably identify most hazardous trees. However, the ISA Hazard Tree Evaluation system is the best available methodology to determine safety concerns for trees in public landscapes and the City should consider having the evaluations performed by some one trained in the ISA system. The City, as the owner of the property, will make the decision on this important matter, determining what system to use, and the qualifications of the review person. They will make the final determination of which trees are considered hazardous and approve mitigation requirements to reduce dangerous conditions including tree removal if needed.

Summary Tree Evaluation Data:

The data collected is summarized on the attached tree evaluation and recommendations spreadsheet. This matrix includes the field observations ratings for each of the large, mature trees.

Establishing the Tree Protection Area

The size of the Tree Protection Area for each tree is calculated to guide the design and help assure the survival of the tree. Tree Protection Areas are typically interpreted as being areas of no construction activity. However, if remedial work to improve growing conditions before, during, and after the construction are undertaken and responsible construction methods under tight controls and design guidelines that will protect the tree's vital systems are employed' construction may take place within this area with little to no impact on the tree. Reasonable practices include those that prepare the tree, protect the tree and soil from damage and provide for after care that mitigates any soil or root damage. These reasonable practices will be further elaborated in the section "Tree Protection Plan".

Tree Protection Area Calculations:

The City of Raleigh uses a formula of 1.5 feet of radius for each inch of trunk diameter to establish the Tree Protection Area. This approach is not supported in the literature as being necessary to successfully save every tree. It is an overly large protection area and assumes that nothing is done to modify normal construction or to mitigate damage. It dos not take into account the differences in age of trees nor the differences species tolerance to withstand construction.

This report recommends using the system developed Nelda Metheny and James Clark in their book "Trees and Development: A technical Guide to Preservation of Trees During Land development". This book, published by the International Society of Arboriculture (ISA), is recognized as the best source of tree preservation information. It was peer reviewed by 15 arborist and tree professionals for its accuracy. The ISA is a serious professional and scientific organization with a long history of improving the care and preservation of trees.

The ISA approach starts by determining the trees tolerance to withstand construction. An extensive research questioner, sent to arborist all over the United Stated, ranked hundreds of different tree species. The results of this questioner were tabulated and published in "Trees and Development". The system uses a ranking of good, moderate and poor tolerance to construction. Fortunately most of the large trees on this site are classified as having good tolerance to construction.

The second step is to determine the tree age with three levels proposed. Young trees, considered at less than 20% of their life expectancy; Mature trees between 20 and 80% of their life expectancy; and Over-mature trees, those with less than 80 % of their life expectancy. For the purpose of this report the Bartlett Tree arborist report was used to make the determination of age classification.

The third step is to determine the requirement of the radius of the Tree Protection Area in feet per inch of trunk diameter. In the ISA system, the radius generally ranges from 0.5 feet per inch of caliper to 1.25 feet per inch of trunk diameter.

In only one case, the most restrictive condition, does the ISA method use 1.5 inch per inch of trunk diameter. The ISA system is as follows:

Species Tolerance	Tree Age	Radius from the trunk in feet per inch of trunk diameter
Good	Young < 20% life expectancy	0.5'
	Mature 20-80% life expectancy	0.75'
	Over mature > 80% life expectancy	1.0'
Moderate	Young	0.75'
	Mature	1.0'
	Over mature	1.25'
Poor	Young	1.0'
	Mature	1.25'
	Over mature	1.5'

ISA Recommended

Using the above system, a radius of Tree Protection Area has been calculated for each large tree. One variation was used to further refine this approach. The above ISA system assumes that the trees health (vigor) is in a normal condition and does not account for other mitigating factors often found at urban sites such as trunk base conditions, soil problems, drainage, or adjacent structures. The ISA system does suggest that these conditions for the trees at Moore Square, some of the tree distance requirements were increase 0.25 feet per inch of trunk diameter to factor for observed conditions that would make the tree preservation more difficult. These trees are noted with an asterisk in the Tree Protection Area Ft/Inch column on the tree evaluation chart.

The methodology used to determine that a tree should be given the extra 0.25' / Inch in the rating was as follows.

Any tree that was rated as Vigor – Poor.

- Any tree that had two out of three categories (Tree Base, Structure, Vigor) in the lowest rating.
- Any tree that had three out of three categories in the medium or low rating.

Using the above methodology, the radius of the Tree Protection Area for the mature trees ranges from 0.5 ft / inch to 1.5 ft / inch with only 3 trees indicated as needing 1.5 ft / inch.

Construction disturbance within the Tree Protection Area:

The Tree Protection Area is not to be considered a place where no construction disturbance is permitted. There are many types of activities including minor grading, paving and small structures that can be successfully implemented provided that proper approaches are taken. Some soil disturbances such as soil invigoration have been shown to improve tree health. These concepts are outlined in the following Tree Protection Plan section. But it should not be assumed that construction disturbances such as paving, grading and the inclusion of structures do not cause any harm to the tree. The construction techniques in the Tree Protection Plan should be limited in their area of impact to the greatest extent possible.

A good rule of thumb is to make the following limitations and requirements on the inclusion of construction impacts in the Tree Protection Area.

0-30% of the Tree Protection Area

Design impacts to one side of the area avoid circling the tree with different impacts.

No Impacts within the Trunk Base Protection Area

Avoid work in the summer.

Apply water to mitigate impact.

Restore fencing and geogrid/mulch matting after the completing of the work.

30-50% of the Tree Protection Area

Design impacts to one side of the area – No impacts on the opposite side. Increase the size of the Tree Protection Area on the side of the tree that is not being disturbed

No Impacts within the Trunk Base Protection Area

Undertake work during the season most favorable for root development and in periods of low plant stress.

Apply water to mitigate impact and continue to apply water as needed over the following year.

Restore fencing and geogrid/mulch matting after the completing of the work.

Increase frequency of monitoring of tree vigor, disease and insect over the following 5 years

Following these guidelines will significantly reduce the impacts on the trees.

Tree Protection Plan

Protecting a tree during construction requires multiple levels of approaches that go far beyond simply fencing the area of protection. A Tree Protection Plan is required that begins prior to the start of construction and carries on well past the end of construction. The plan will have parts that must be implemented by the City. Parts of the plan will impact the design process and parts that will become a part of the construction documents. Portions of the plan will become part of the park's long-term management plan.

If properly developed and implemented, the result of the Tree Protection Plan over the long term of the life of the tree is that the mature trees in Moore Square will likely be healthier after the construction than before and their life expectancy should increase. Each part of the plan not only protects the trees from damage, but also will improve growing conditions and mitigate existing conditions in ways that would likely not be possible under current park management budgets.

The following is the outline for the Tree Protection Plan, presented as a series of general concepts that will guide the development of specific recommendations for each tree as the details of the design and construction process develops. The plan has four parts. Pre-construction requirements; Design and construction documents requirements; Construction requirements; and Post construction requirements.

Pre-construction requirements:

- 1. Evaluate the existing tree conditions.
- 2. Establish Tree Protection Area and Trunk Base Protection Area for each tree.
- 3. Perform a Hazard Tree Evaluation for each mature tree and develop tree mitigation requirements for all conditions encountered. Implement the mitigation requirements.
- 4. Establish and fund a preconstruction tree management budget to implement the preconstruction portion of the Tree Protection Plan. This needs to be undertaken as soon as possible and is NOT part of the construction budget.
- 5. Identify the primary tree care manager within the Parks Department to oversee the Tree Protection Plan.
- 6. Develop and implement a tree health management contract with an arborist to monitor and treat all disease and insect problems; prune trees to remove deadwood and structural defects.
- 7. Apply Cambistat tree growth regulator to all mature trees to reduce growth rates and stimulate fine root production. Note that Cambistat requires a minimum of one year to begin to have positive effects on the tree and needs to be applied every three years. Ongoing applications of Cambistat should remain a City responsibility during the construction to assure that consistent application requirements are followed.
- Apply any nutrients recommended by the soil test to bring soils in the root zone to optimum nutrient levels before, during and after the construction. Ongoing soil testing and applications of nutrient should remain a City

responsibility during the construction to assure that consistent application requirements are followed.

9. During periods of prolonged drought prior to construction, develop and implement a root zone watering program for all mature trees to remain to assure that they are not water stressed.

Design and construction documents requirements:

- Insert into the design drawings the limits of the Tree Protection Area and Trunk Base Protection Area for each tree. These limits should be included in every site construction plan document of each of design disciplines to assure that all design consultants understand the importance of these areas and when their work is impacting these zones.
- 2. Develop a Soils Improvement Plan, soil details and soil specifications for all areas of the park that retains good soils; protects root zone soils from damage; and improves soil within and outside the Tree Protection Area for future growth of each tree.
- 3. Develop Tree Protection Plans, details and specifications that detail specific requirements for tree protection including fencing, mulching/matting, operations allowed within the Tree Protection Area, trenching/ grading techniques, watering requirements, disease and insect controls, pruning, and monitoring and mitigation of inadvertent damage.
- 4. Establish the cost to the contractor for various levels of tree damage including placing an ISA based value on each tree in the event that it is damaged to the point where the tree's long-term health is compromised by damage caused by the contractor.
- 5. Protect soil within the Tree Protection Area from compaction by fencing and mulch/geogrid matting.
- 6. Grading cuts should be minimized or when required made with an air spade and vactor equipment. Roots larger than 1 inch in diameter encountered during grading must be cut only with the approval of the project arborist.
- 7. Grading fills must be preceded by removal of organic layers or turf. Undertake airspade invigoration of the existing soil that may include mixing existing organic layers with the sub soil below and mixing with the new soil to be installed. Fill soil in the Tree Protection Area must be sandy loams place by low compaction impact procedures. New grades must continue to provide for drainage and aeration of the soil. If fills exceed 12 inched deep aeration layers between the fill and existing grades must be included.
- 8. Utility line trenches within the Tree Protection Area should be avoided and lines redirected around the Tree Protection Area. Where unavoidable new utility lines shall be installed with directional boring technology; or the use of airspade /vactor equipment.
- 9. New paving should be placed on geogrid/ aggregate bases. Walls and other structures should employ pier and beam bridging with designs that are flexible to move piers or beams to avoid large roots. All excavation must use airspade / vactor equipment. The arborist must approve any roots to be cut over 1" in diameter.
- 10. All new planting within the Tree Protection Area must be performed using planting concepts that require the least amount of disturbance. Bare root

planting and planting with airspade digging tool is preferred. Spacing of plants should be as wide as practical and allow plants to grow together. Tightly spaced plants to make instant effects of the planting must be avoided.

Construction requirements:

- 1. Retain an independent arborist to monitor all tree protection provisions during the extent of the work. The arborist must have access to the site frequently enough to make reasonable and timely review of the work. The cost of this provision must be included in the project budget.
- 2. Implement the requirements in the Tree Protection Plan provisions.
- 3. Implement the requirements in the Soil Plan provisions
- 4. The provisions of the Tree Protection Plan must be flexible to accommodate all factors in the construction sequence. The project arborist must approve all modifications to the plan.
- 5. Provide supplemental water to the root zone during the construction.

Post construction requirements:

- 1. Assure that there is a well documented and understood transfer point of tree maintenance responsibility from contractor to the City at the end of the construction.
- 2. Continue supplemental watering of the root zone as required for a minimum of 5 years.
- 3. Continue Cambistat and nutrient treatments as required for a minimum of 5 years after the end of construction.
- 4. Continue intensive tree health monitoring for a minimum of 10 years.

Introduction

The following is the report of findings of the soil conditions at Moore Square in Raleigh, North Carolina. This report examines the soil from the perspective of existing and future plant growth. The findings are based on review of the site conditions on September 17 and 18, 2012, and the review of the planning documents for the proposed improvements to the park. All references to historical site conditions are taken from the master plan reports.

Historical overview of soil disturbance:

Moore Square was part of the original 1772 Town Plan for the city. It likely evolved from either forest or farm land directly into a public park. This would have resulted in minimum soil disturbance.

Only two structures of any significance were ever built in the park, those being before 1896. These structures fall in the central area of disturbance and were likely out of the current root zones of large existing trees. The small kiosk built on the south side of the park appears to have caused minimum soil disturbance compared to disturbances from walks, later grading and utility work.

The earliest representations of trees show the trees clustered on the east side of the park, possibly a remnant forest or second growth after logging. This edge is characterized by steeper slopes and may have been more irregular than currently sloped. The more formal designs of 1896 and 1914 would have likely smoothed grading on the east side of the park as well as removing the previously mentioned trees. The grading of the current plan appears to have pushed a layer of fill to the east of the center of the park.

The many alignments of walks over the parks history have caused soil disturbance along the edges of the alignments. The center of the park and the four widen arms of the crossing diagonals have also introduced their share of soil disturbance.

The many different uses and events at the square from pasture, civil war troop camp to contemporary music festivals, all extracted a toll on soil quality. Hard layers of soil were encountered in many locations. Multiple rounds of park utility electric and water lines also have disturbed the soil.

Throughout the park, large areas of mulch beds cover the ground. These are areas where park maintenance has not been able to keep turf growing. Much of this turf problem is related to intense use during the many concerts and festivals staged in the park. These areas are also almost always within the canopy of the large trees. It is likely that people gather more in the shade during events contributing to turf damage. Trees and turf are also difficult partners, and problems are increase with the added compaction of people. Serious consideration on solving the shade, event, and turf conflicts must accompany any park redesign. Recent study of the national Mall turf in Washington DC indicates that event structures, turf abrasion, and events on saturated soil contribute the majority of turf damage rather than compaction from park users. While all these disturbances result in almost all areas of the park being disturbed to some degree, the soil disturbance in the large center space, its northern extension to Hargett Street and portions of the east side of the park are significant to the point of impacting existing and future tree growth.

Current topography and soil disturbance:

Current topography can be read for soil disturbance. Cut and fill slopes appear associated with paving throughout the park. This is particularly true at the perimeter where the walks and grades meet the street sidewalk edges. It appears that the streets were generally cut into the existing predevelopment grades as part of a larger scale grading scheme to create smooth street grade transitions from the ridge line parallel to Fayetteville Street and the lower lands east of the downtown area. In the middle portion of the site the contours are highly irregular with minimum organizing features, characteristic of continuous changes from different construction efforts. Only the slopes in the parks east side seem to reflect a pre development contour pattern. But even here fill soils were discovered.

Soil profile pit descriptions:

20 multi layer profile pits were dug and recorded. Soil profile descriptions are in the following section. A general review and interrelationship of the soil profiles follows later in a later section "**Interpretation of the soils information.**"

The approximate locations of all profile pits are shown on the attached "Soil Profile Pits Location Plan. The following are the description of the soil profiles observed.

Note the following gradations of terms for moisture and compaction are used in this report to describe soil conditions. Soil textures are USDA terminology as estimated during the digging process.

Moisture: terminology for soil moisture from dry to wet as determined by visual analysis and feel.

Dry – soil will not hold together after being crushed Damp – soil will marginally hold together when crushed Moist – soil can be formed into a ball Wet – soil sticks together and will stick to the hand Saturated – free water observed on the soil

Density: terminology for soil density from loose to solid as felt during the angering process. Note that dry soils can "feel' compacted, while compacted soil can "feel" soft when moist. The presence of roots is a better indication of compaction below root limiting levels.

Loose – auger easily penetrates the soil Soft – auger penetrates the soil with moderate effort Firm – auger requires strong push to penetrate the soil Hard – auger requires maximum pressure to penetrate the soil Refusal – auger refuses to penetrate the soil

Location 1:

Soil profile	Depth	Description
		Surface cover: Wood chip mulch
and the second		
	0-0.2'	Decomposing wood chip mulch; dark brown/black;
		moist; soft; roots observed
	0.2'-0.5'	High organic fine sandy loam; dark brown;
		damp/dry; firm; roots observed
A COMPANY OF A	0.5'-1.0'	Fine sandy loam; light brown, dry; firm; roots
	010 110	observed
		00001100
	1.0'-1.4'	Fine sandy clay loam; light brown/orange; dry;
	1.0 1.4	hard; roots observed
An and a second	1.4'-1.8'	Fine sandy clay loam; orange/brown; dry; very
	1.4 - 1.0	hard; roots observed
A CONTRACTOR OF A CONTRACTOR		naru, roots observed
	1.8'-2.1'	Fine conduction loom, cronger dry, yery bord,
	1.0 -2.1	Fine sandy clay loam; orange; dry; very hard; roots observed
and the second second		
	0.41	
and the second s	2.1'	Auger refusal

Remarks: The soils below 0.5' are likely to be an undisturbed soil profile. Soil profile taken near one of the older and healthier trees in the park.

Location 2:

Soil profile	Depth	Description Surface cover: Wood chip mulch
	0-0.2' 0.2'-0.3' 0.3'-0.4' 0.4'-0.6' 0.6'-1.2'	Wood chip mulch Very organic loam, dark brown/black; moist; loose; roots observed Interface; sandy loam fill; brown; dry; firm; roots observed Interface; loam fill; dark brown; dry; firm; roots observed Interface; fine sandy/gravel loam; grey/brow; dry; hard to V hard; roots observed
	1.2'	Coal ash fragments Trace of sandy clay, orange; dry; auger refusal

Remarks: Fill soils over subgrade soils. Disturbed soil profile.

Location 3:

Soil profile	Depth	Description Surface cover: Wood chip mulch
	0-0.3'	Wood chips; dark brown/black; moist; soft; roots observed
	0.3'-0.5'	Decomposed organic material; dark brown/black; moist; soft; roots observed
	0.5'-0.8'	Fine sandy loam/ sandy clay loam; brown; moist; soft; roots observed
	0.8'-1.4'	Fine sandy clay loam/gravel; orange brown; moist; soft; roots observed;
		Cloth strip fond at approximately 1.0', roots observed and large root struck
	1.4'-1.7'	Fine sandy clay loam, orange/ brown; moist; soft; minor roots
A Sugar	1.7'-2.6'	Gritty, gravel sandy clay loam; orange; dry; firm to very hard w/depth
	2.6'	Same as above; very dry; auger refusal

Remarks: Profile below 1.4 feet likely an undisturbed sub soil. Profile adjacent to largest (DBH) tree on site

Location 4:

Remarks: Profile similar to Location #3

Location 5:

Remarks: Profile similar to Location #3 except Orange soil starts at about 1.5'.

Location 6:

Soil profile	Depth	Description Surface cover: Wood chip mulch
	0-0.3'	Decomposing wood chips, dark brown/black; moist; soft; roots observed
	0.3-0.7'	Interface; sandy loam; dark brown; moist; soft; roots observed
	0.7-1.4'	Interface; fine sandy loam; light brown; damp, firm; roots observed
	1.4'-2.4'	Interface; gravel and fine sandy clay; orange; moist, firm
	2.4'	Stopped digging

Location 7:

Soil profile	Depth	Description
		Surface cover: Mulch
	0-0.1	Scant wood chip mulch
Part of the second	0.1'-0.7'	Sandy loam; brown; damp; soft
	0 0	
	0.7'-1.0'	Coarse sand; grey; dry; soft
	1.0'	Refusal at gravel layer

Remarks: Tree planting island built into parking space. Tree recently planted. Another tree in similar island is dead.

Remarks: Highly disturbed soil near walk

Location 8:

	I = .	
Soil profile	Depth	Description Surface cover:
	0-0.2' 0.2'-0.7'	Decomposing wood chips; dark brown/black; moist; soft; roots observed Fine sandy loam; brown; dry; firm; roots observed
	0.7'-1.2'	Interface; fine sandy silt loam; light brown; dry; firm; roots observed
	1.2'-1.3'	Interface; silty sandy loam; dark brown; moist; firm; roots observed, glass fragment, likely
	1.3'-1.9'	buried fill soil Interface; fine sandy silt loam; light brown; dry; hard; roots observed
	1.9'	Auger refusal; bits of hard orange subsoil observed

Remarks: Disturbed fill soils

Location 9:

Soil profile	Depth	Description Surface cover: Wood chip mulch
Profile not photographed		Highly disturbed soil; multi layers; moist, one layer slightly anaerobic

Remarks: in bed next to electric vault

Location 10:

Soil profile	Depth	Description Surface cover: Wood chip mulch
Same as profile #1		

Remarks:

Location 11:

Soil profile	Depth	Description Surface cover: Wood chip mulch
Same as profile #1		

Remarks:

Location 12:

Soil profile	Depth	Description
		Surface cover: Wood chip mulch
Same as profile		Soil slightly wetter than other #1 profiles
#1		

Remarks:

Location 13:

Soil profile	Depth	Description
Soli prolite	Deptil	
		Surface cover: Turf grass
Charles I		
The second se		
	0-0.3'	Loam; dark brown/black; moist; soft; roots
		observed
	0.3'-0.5'	Sandy loam; dark brown; moist; soft; roots
		observed
	0.5'-0.8'	Sandy loam; brown; moist; soft; roots
		observed
	0.8'-1.2'	
		Sandy clay loam; light brown/orange; moist;
		firm; roots observed
- Carl Hand Art -		
	1.2'-1.6'	
CALL STORE		Clay loam; orange; damp to moist; hard
		onay loani, orango, aanip to molot, hara
DATE FOR DE		
FIFE FIFE		
· FLORE T FOR A		
	1.01	
A A A A A A A A A A A A A A A A A A A	1.6'	
		Very hard; Stopped digging

Remarks: Disturbed profile

Location 14:

Soil profile	Depth	Description Surface cover: Wood chip mulch
Same as profile #1		

Remarks:

Location 15:

Soil profile	Depth	Description Surface cover: Turf grass
Profile not photographed	0-0.7'	Loamy soil, dark brown; moist; soft
	0.7'	Fine sandy clay loam; orange, damp; firm

Remarks:

Location 16:

Soil profile	Depth	Description
		Surface cover:
Same as # 15		

Remarks:

Location 17:

Soil profile	Depth	Description Surface cover: Turf grass
Same as # 1		_

Remarks:

Test pits at locations 15 -17 was an attempt to confirm the edge of the disturbed soil in this area of the site.

Location 18:

Soil profile	Depth	Description Surface cover: Wood chip mulch
	0-0.6'	Decomposing mulch; dark brown/black; moist; soft; roots observed
	0.6'-1.1'	Fine sandy loam; dark brown; moist; soft; roots observed
	1.1'-1.5'	Fine sandy loam; brown; moist; soft; roots observed
	1.5'-2.1'	Fine sandy clay loam; brown/ orange; moist; soft; roots observed
	2.1'	Auger refusal on large root

Location 19:

Soil profile	Depth	Description Surface cover: Turf grass
Same as #13		-

Remarks:

Location 20:

Soil profile	Depth	Description Surface cover:
Profile not photographed	0-1.5'	Sandy loam; brown; damp; firm
	1.5'	Interface; coarse sandy clay loam; red/orange; damp hard

Remarks: Fill soil over graded subsoil

Remarks:

Soil nutrient testing:

At 12 locations, marked 1 thru 2, on the Soil Bulk Density and Nutrient Test Location plan, soil was collected by the Bartlett Tree Experts from the top layer of the soil for nutrient testing. Samples were processed by Bartlett Tree Expert soil labs. The purpose of the testing was to gain a background chemical profile of the upper layer of the soil. The following are the test results and lab recommendations for modifications to soil nutrients. A general review of the soil testing results and recommendations follows later in section **Interpretation of the soils information.**

Nutrient Test Location 1:

Nutrient Test Location 2:

Nutrient Test Location 3:

		Soil Analysis	Report - Tech	nnician Cop	y .		
			e Research Lal				
		Chr	is Counts Stu	dio			
Bartlett Arborist: Jeff			uare in downtow			ple ID: 131904	ł.
Plant Species: Other			lorth Carolina 2	7604		: 18-Aug-10	
Location/ELM ID: #3					A&L:	10-229-0511	
Fertilization Goal: M	aintain Vitality	/					
			Results				
Soll pH		Acceptable	Ideal pH ran	ge for Other: 5	5 to 6.5		
Nitrogen (ENR)	113.0						
Phosphorous (P)		Very High					
Potassium (K)		Very High					
Magnesium (Mg)		Very High					
Calcium (Ca)	5756.0	' Medium					
Soil Organic Matter	(OM) 4.4	Medium	Nutrient Ret	ention Capacit	y 22.5 Very	High	
		-		-		_	
			commendatio				10420
	1000		in 30 gallons or			123112	
Prescription Fertiliza	and the second second	<u>cc/ml</u>	cups	quarts	gallons	grams	pounds
Nitrogen	Nitro 30 Nitroform	2.5 L 3.7 L	10.6	2.6			
Phosphorus	Liquid Phose		15.5	3.9	1.0	2.4 Kg	5.0
Potassium	Potassium S						
Gypsum	pelletized	36.9 L			9.8	48.0 Kg	100.0
Lime	pelletized						
	powdered						
Sulfur	pelletized						
	powdered						
Magnesium Sulfate							
Iron chelate	gallons						
Managanara chalata	pounds gallons						
Manganese chelate	pounds						
Conventional Fertiliz Boost Natural	ation						
Boost		121.2 L			32.0		
Boost Granular		60.6 L 2.5 L	10.5	25	16.0	2480	5.0
Organic Milorganite		2.5 L 7.1 L	30.0	2.6	1.9	2.4 Kg 4.8 Kg	10.0
Mulch or incorporate	organic matt		30.0	1.5	1.9	4.0 Ng	10.0
Comments:							
* indicates a deficiency	" indicates a pot	writing training					
		tion to soil surface is 100 lb					

Nutrient Test Location 4:

Nutrient Test Location 5:

		Soil Analysis F Bartlett Tree	Report - Techi e Research Lab				
		Chris	s Counts Stud	iio			
Bartlett Arborist: Jeff Plant Species: Other Location/ELM ID: Ac Fertilization Goal: M	r Ijacent to tree	Raleigh, No #47	are in downtown orth Carolina 27		Date	ple ID: 131919 18-Aug-10 10-229-0511	
	,		Results				
Soll pH	5.9	Acceptable	Ideal pH rang	e for Other: 5.5	1065		
Nitrogen (ENR)	98.0						
Phosphorous (P)	348.0	Very High					
Potassium (K)	374.0	Very High					
Magnesium (Mg)	256.0	Medium					
Calcium (Ca)	1924.0	Medium					
Soil Organic Matter	(OM) 3.7	Medium	Nutrient Reter	ntion Capacity	8.4 High		
	1	Rec	ommendation	ie.			
Fertilization Ar	ea: 1000 sq.ft	and the second se	in 30 gallons or	and the second se	ter Soll inje	ect 1 Quart per	site
Prescription Fertiliza	tion	cc/ml	cups	quarts	gallons	grams	pounds
Nitrogen	Nitro 30	2.5 L	10.6	2.6		1	
	Nitroform	3.7 L	15.5	3.9	1.0	2.4 Kg	5.0
Phosphorus	Liquid Phosp						
Potassium	Potassium S						
Gypsum Lime	pelletized	22.2 L			5.9	28.8 Kg	60.0
Lime	powdered						
Sulfur	pelletized						
Contra	powdered						
Magnesium Sulfate		2.8 L	11.7	2.9		3.4 Kg	7.0
Iron chelate	gallons						
	pounds						
Manganese chelate	gallons pounds						
Conventional Fertiliz	ation						
Boost Natural		121.2 L			32.0		
Boost		60.6 L			16.0		
Boost Granular		3.5 L	14.7	3.7		3.4 Kg	7.0
Organic Milorganite		14.2 L			3.8	9.6 Kg	20.0
Mulch or incorporate	organic matte	er: Yes					
Comments:							
* indicates a deficiency	" indicates a pote	ential toxicity					
""Limestone Maximum Rate	for a single applicat	ion to soil surface is 100 lbs	for powdered or 150 lbr	s for pelletized lime, a	eith Root Invigora	tion apply up to 200	ko.

Nutrient Test Location 6:

Soil Analysis Report - Technician Copy Bartlett Tree Research Laboratories Chris Counts Studio

Bartlett Arborist: Jeff Plant Species: Othe Location/ELM ID: #7 Fertilization Goal: M	r ' under tree #	Raleigh, f	uare in downtow North Carolina 2		Date	ple ID: 131911 18-Aug-10 10-229-0511	
		,	Results				
Soil pH	5.5	Acceptable	Ideal pH ran	ge for Other: 5.	5 to 6.5		
Nitrogen (ENR)	73.0			and the second second			
Phosphorous (P)	576.0	Very High					
Potassium (K)	314.0	High					
Magnesium (Mg)	178.0	* Medium					
Calcium (Ca)	1360.0	"Low					
			Molybdenum	n (Mo)	0.0		
Soll Organic Matter	(OM) 2.4	· Very Low	Nutrient Ret	ention Capacity	6.9 Medi	um	
	1	Re	commendatio	ns			
Fertilization Ar	ea: 1000 sq.	ft or 93 sq. m Mb	in 30 gallons of	r 113 liters of w	ater Soll inje	ect 1 Quart per	r site
Prescription Fertiliza	tion	cc/mi	cups	quarts	gallons	grams	pounds
Nitrogen	Nitro 30	3.8 L	16.0	4.0	1.0		
	Nitroform	5.5 L	23.3	5.8	1.5	3.6 Kg	7.5
Phosphorus Potassium	Liquid Phos Potassium						
Gypsum	pelletized	18.5 L			4.9	24.0 Kg	50.0
Lime	pelletized						
C	powdered						
Sulfur	pelletized powdered						
Magnesium Sulfate		2.0 L	. 8.4	2.1		2.4 Kg	5.0
Iron chelate	gallons						
Manganese chelate	pounds gallons						
Manganese crietate	pounds						
Conventional Fertiliz	ation						
Boost Natural		189.5 L			50.0		
Boost		94.7 L			25.0		
Boost Granular		5.0 L	21.0	5.3	1.3	4.8 Kg	10.0
Organic Milorganite		17.8 L			4.7	12.0 Kg	25.0
Mulch or incorporate	organic mat	tter: Yes					
Comments:							
' indicates a deficiency	** indicates a po	stential toxicity					
"Umestone Maximum Rate		NY CONTRACTOR OF A DESCRIPTION	is for powdered or for p	elletized lime, with Ro	ot Invigoration app	ly up to 150 lbs.	

Nutrient Test Location 7:

Nutrient Test Location 8:

Nutrient Test Location 9:

Nutrient Test Location 10:

Nutrient Test Location 11:

Nutrient Test Location 12:

Soil Bulk Density testing:

At 12 locations, marked 1 thru 12, on the Soil Bulk Density and Nutrient Test Location plan, soil was collected by the Bartlett Tree Experts from the top layer of the soil for bulk density testing. Samples were processed by Bartlett Tree Expert soil labs. The purpose of the testing was to gain an understanding of background bulk density level profile of the upper layer of the soil. The following are the test results and lab recommendations for modifications to soil bulk density. A general review of the soil testing results and recommendations follows later in section **Interpretation of the soils information.**

Bulk Density Test Location 1:

Bartlett Tree Research Laboratories

Diagnostic Report

Sample Number:	131896	Submission Date:	12-Aug-10	
Sample Type:	Physical Only	Test Requested:	Bulk Density	
Plant Name:	Other, Willow oak	Submitter:	Jeffery Kish	
Loc. in Landscape:	#1 under tree 65	Office:	Raleigh	
Client:	Chris Counts Studio	Date Collected:	06-Aug-10	
	Moore Square in downtown Raleigh			
	Raleigh North Carolina 27604			

Diagnosis:

The texture and bulk density of your sample was as follows:

Peat / Mulch - .454 g/cc

This soil is not compacted.

REMEDIAL TREATMENT RECOMMENDATIONS: No treatment for compaction is required on this tree.

Fertilize according to soil analysis results is recommended.

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation and soil temperature moderation to improve tree vitality.

Diagnostician: George Palmer

Bulk Density Test Location 2:

Bulk Density Test Location 3:

Bartlett Tree Research Laboratories

Diagnostic Report

Sample Number:	131899	Submission Date:	12-Aug-10
Sample Type:	Physical Only	Test Requested:	Bulk Density
Plant Name:	Other, Willow oak	Submitter:	Jeffery Kish
Loc. in Landscape:	#2 adjacent to #69	Office:	Raleigh
Client:	Chris Counts Studio	Date Collected:	06-Aug-10
	Moore Square in downtown Raleigh		
	Raleigh North Carolina 27604		

Diagnosis:

The texture and bulk density of your sample was as follows:

Sandy Loam / Sandy Clay - 1.166 g/cc

This soil is not compacted.

REMEDIAL TREATMENT RECOMMENDATIONS: No treatment for compaction is required on this tree.

Fertilize according to soil analysis results is recommended.

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation and soil temperature moderation to improve tree vitality.

Diagnostician: George Palmer

Bartlett Tree Research Laboratories Diagnostic Report

Sample Number:	131895	Submission Date:	12-Aug-10
Sample Type:	Physical Only	Test Requested:	Bulk Density
Plant Name:	Other, Willow oak	Submitter:	Jeffery Kish
Loc. in Landscape:	#3 common are between trees 31 and 32	Office:	Raleigh
Client:	Chris Counts Studio	Date Collected:	06-Aug-10
	Moore Square in downtown Raleigh		
	Raleigh North Carolina 27604		

Diagnosis: The texture and bulk density of your sample was as follows:

Loam / Sandy clay 1.308 g/cc

Sample is slightly compacted.

REMEDIAL TREATMENT RECOMMENDATIONS: Application of a 2 to 4° thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation, soil temperature moderation and in the long run, to a reduction in bulk density. This treatment combined with prescription fertilization should help improve water uptake and promote tree growth.

Soil moisture is a major factor in compacted soils and with declining trees. Compaction reduces penetration of water into the soil and reduces percolation out of the soil once water does get in. To monitor soil moisture at this site tensiometers are recommended. A soil wetting agent may be used if the soil does not wet easily.

Diagnostician: George Palmer

F.A. Bartlett Tree Expert Company Copyright 2012. All Rights Reserved

F.A. Bartlett Tree Expert Company Copyright 2012. All Rights Reserved

Bulk Density Test Location 4:

Bulk Density Test Location 5:

Bartlett Tree Research Laboratories Diagnostic Report

Sample Number:	131898	Submission Date:	12-Aug-10	
Sample Type:	Physical Only	Test Requested:	Bulk Density	
Plant Name:	Other, Willow oak	Submitter:	Jeffery Kish	
Loc. in Landscape:	#4 under tree 36	Office:	Raleigh	
Client:	Chris Counts Studio	Date Collected:	06-Aug-10	
	Moore Square in downtown Raleigh			
	Raleigh North Carolina 27604			

Diagnosis: The texture and bulk density of your sample was as follows:

Peat / Mulch - .384 g/cc

This soil is not compacted.

REMEDIAL TREATMENT RECOMMENDATIONS: No treatment for compaction is required on this tree.

Fertilize according to soil analysis results is recommended.

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation and soil temperature moderation to improve tree vitality.

Diagnostician: George Palmer

Bartlett Tree Research Laboratories Diagnostic Report

Sample Number:	131897	Submission Date:	12-Aug-10	
Sample Type:	Physical Only	Test Requested:	Bulk Density	
Plant Name:	Other, Willow oak	Submitter:	Jeffery Kish	
Loc. in Landscape:	#5 adjacent to tree #44	Office:	Raleigh	
Client:	Chris Counts Studio	Date Collected:	06-Aug-10	
	Moore Square in downtown Raleigh			
	Raleigh North Carolina 27604			

Diagnosis: The texture and bulk density of your sample was as follows:

Sandy Loam / Sandy Clay - 1.046 g/cc

This soil is not compacted.

REMEDIAL TREATMENT RECOMMENDATIONS: No treatment for compaction is required on this tree.

Fertilize according to soil analysis results is recommended.

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation and soil temperature moderation to improve tree vitality.

Diagnostician: George Palmer

F.A. Bartlett Tree Expert Company Copyright 2012. All Rights Reserved

F.A. Bartlett Tree Expert Company Copyright 2012. All Rights Reserved

Bulk Density Test Location 7:

Bartlett Tree Research Laboratories Diagnostic Report

and the second second	1411-12	121210-0012-0020-00	100000000	
Sample Number:	131900	Submission Date:	12-Aug-10	
Sample Type:	Physical Only	Test Requested:	Bulk Density	
Plant Name:	Other, Willow oak	Submitter:	Jeffery Kish	
Loc. in Landscape:	Adjacent to tree #47	Office:	Raleigh	
Client:	Chris Counts Studio	Date Collected:	06-Aug-10	
	Moore Square in downtown Raleigh			
	Raleigh North Carolina 27604			

Diagnosis:

The texture and bulk density of your sample was as follows:

Loam / Sandy clay 1.414 g/cc

Sample is slightly compacted.

REMEDIAL TREATMENT RECOMMENDATIONS:

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation, soil temperature moderation and in the long run, to a reduction in bulk density. This treatment combined with prescription fertilization should help improve water uptake and promote tree growth.

Soil moisture is a major factor in compacted soils and with declining trees. Compaction reduces penetration of water into the soil and reduces percolation out of the soil once water does get in. To monitor soil moisture at this site tensiometers are recommended. A soil wetting agent may be used if the soil does not wet easily.

Diagnostician: George Palmer

Bartlett Tree Research Laboratories Diagnostic Report

A second contract of the	1000 C C C C C C C C C C C C C C C C C C			
Sample Number:	131901	Submission Date:	12-Aug-10	
Sample Type:	Physical Only	Test Requested:	Bulk Density	
Plant Name:	Other, Willow oak	Submitter:	Jeffery Kish	
Loc. in Landscape:	#7 between trees 24 and 25	Office:	Raleigh	
Client:	Chris Counts Studio	Date Collected:	06-Aug-10	
	Moore Square in downtown Raleigh			
	Raleigh North Carolina 27604			

Diagnosis: The texture and bulk density of your sample was as follows:

Sandy Loam / Sandy Clay - 1.170 g/cc

This soil is not compacted.

REMEDIAL TREATMENT RECOMMENDATIONS: No treatment for compaction is required on this tree.

Fertilize according to soil analysis results is recommended.

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation and soil temperature moderation to improve tree vitality.

Diagnostician: George Palmer

F.A. Bartlett Tree Expert Company Copyright 2012. All Rights Reserved

F.A. Bartlett Tree Expert Company Copyright 2012. All Rights Reserved
Bulk Density Test Location 9:

Bartlett Tree Research Laboratories Diagnostic Report

Sample Number:	131894	Submission Date:	12-Aug-10
Sample Type:	Physical Only	Test Requested:	Bulk Density
Plant Name:	Other, Willow oak	Submitter:	Jeffery Kish
Loc. in Landscape:	#8 under tree #3	Office:	Raleigh
Client:	Chris Counts Studio	Date Collected:	06-Aug-10
	Moore Square in downtown Raleigh		
	Raleigh North Carolina 27604		

Diagnosis:

The texture and bulk density of your sample was as follows:

Sandy Loam / Sandy clay 1.382 g/cc

Sample is slightly compacted.

REMEDIAL TREATMENT RECOMMENDATIONS:

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation, soil temperature moderation and in the long run, to a reduction in bulk density. This treatment combined with prescription fertilization should help improve water uptake and promote tree growth.

Soil moisture is a major factor in compacted soils and with declining trees. Compaction reduces penetration of water into the soil and reduces percolation out of the soil once water does get in. To monitor soil moisture at this site tensiometers are recommended. A soil wetting agent may be used if the soil does not wet easily.

Diagnostician: George Palmer

Bartlett Tree Research Laboratories Diagnostic Report

Sample Number:	131891	Submission Date:	12-Aug-10
Sample Type:	Physical Only	Test Requested:	Bulk Density
Plant Name:	Other, Willow oak	Submitter:	Jeffery Kish
Loc. in Landscape:	#9 gathering area at Hargett	Office:	Raleigh
Client:	Chris Counts Studio	Date Collected:	06-Aug-10
	Moore Square in downtown Raleigh		
	Raleigh North Carolina 27604		

Diagnosis: The texture and bulk density of your sample was as follows:

Loam / Sandy clay 1.210 g/cc

Sample is slightly compacted.

REMEDIAL TREATMENT RECOMMENDATIONS:

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation, soil temperature moderation and in the long run, to a reduction in bulk density. This treatment combined with prescription fertilization should help improve water uptake and promote tree growth.

Soil moisture is a major factor in compacted soils and with declining trees. Compaction reduces penetration of water into the soil and reduces percolation out of the soil once water does get in. To monitor soil moisture at this site tensiometers are recommended. A soil wetting agent may be used if the soil does not wet easily.

Diagnostician: George Palmer

F.A. Bartlett Tree Expert Company Copyright 2012. All Rights Reserved

F.A. Bartlett Tree Expert Company Copyright 2012. All Rights Reserved

Bulk Density Test Location 10:

Bulk Density Test Location 11:

Bartlett Tree Research Laboratories Diagnostic Report

Sample Number:	131893	Submission Date:	12-Aug-10
Sample Type:	Physical Only	Test Requested:	Bulk Density
Plant Name:	Other, Willow oak	Submitter:	Jeffery Kish
Loc. in Landscape:	#10 between 5 and 30	Office:	Raleigh
Client:	Chris Counts Studio	Date Collected:	06-Aug-10
	Moore Square in downtown Raleigh		
	Raleigh North Carolina 27604		

Diagnosis: The texture and bulk density of your sample was as follows:

Sand / Loamy Sand - .929 g/cc

This soil is not compacted.

REMEDIAL TREATMENT RECOMMENDATIONS: No treatment for compaction is required on this tree.

Fertilize according to soil analysis results is recommended.

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation and soil temperature moderation to improve tree vitality.

Diagnostician: George Palmer

Bartlett Tree Research Laboratories Diagnostic Report

Sample Number:	131890	Submission Date:	12-Aug-10
Sample Type:	Physical Only	Test Requested:	Bulk Density
Plant Name:	Other, Willow oak	Submitter:	Jeffery Kish
Loc. in Landscape:	Along Blount between trees 30 and 63	Office:	Raleigh
Client:	Chris Counts Studio	Date Collected:	06-Aug-10
	Moore Square in downtown Raleigh		
	Raleigh North Carolina 27604		

Diagnosis: The texture and bulk density of your sample was as follows:

Peat / Mulch - .590 g/cc

This soil is not compacted.

REMEDIAL TREATMENT RECOMMENDATIONS: No treatment for compaction is required on this tree.

Fertilize according to soil analysis results is recommended.

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation and soil temperature moderation to improve tree vitality.

Diagnostician: George Palmer

F.A. Bartlett Tree Expert Company Copyright 2012. All Rights Reserved

F.A. Bartlett Tree Expert Company Copyright 2012. All Rights Reserved

Bulk Density Test Location 12:

Bartlett Tree Research Laboratories

Diagnostic Report

Sample Number:	131889	Submission Date:	12-Aug-10	
Sample Type:	Physical Only	Test Requested:	Bulk Density	
Plant Name:	Other, Willow oak	Submitter:	Jeffery Kish	
Loc. in Landscape:	Along Blount between trees 66 and 68	Office:	Raleigh	
Client:	Chris Counts Studio Moore Square in downtown Raleigh	Date Collected:	06-Aug-10	
	Raleigh North Carolina 27604			

Diagnosis:

The texture and bulk density of your sample was as follows:

Peat / Mulch - .441 g/cc

This soil is not compacted.

REMEDIAL TREATMENT RECOMMENDATIONS: No treatment for compaction is required on this tree.

Fertilize according to soil analysis results is recommended.

Application of a 2 to 4" thick layer of mulch from near the trunk to near the drip line of the tree will provide soil moisture conservation and soil temperature moderation to improve tree vitality.

Diagnostician: George Palmer

F.A. Bartlett Tree Expert Company Copyright 2012. All Rights Reserved

Plant / soil observations:

The general quality of trees and other plantings indicate that the soil in Moore Square is very good and supporting long-term tree growth in almost all areas of the park. Even the disturbed soils are supporting reasonable tree and plant growth. The exceptions are the trees in planting islands at the parking spaces on the south edge of the park and in the central portion of the park. Turf decline appears to be more a problem with abrasion, shade and event use competition than compaction.

Interpretation of the soils information:

Soil Testing: Both the nutrient testing and bulk density testing indicate that few problems exist in the top layer of the soil, however, much of the testing sites only examined the decomposing mulch layer common throughout much of the park. The testing also focused on soils under the canopies of the largest healthiest trees where good soils would have been expected.

The nutrient testing indicates that pH is around 5.5 to 6.4 in almost all areas of the park. This is a good range of pH for all the existing tree types. This pH is low for turf. One test site, #9, has a pH of 4.9. this is one of the few places where soil was tested in the center space where poor soils are observed. Chemical testing for phosphorus and potassium and often also Magnesium is high to very high. This may indicate that large amounts of fertilizer have been applied over the many years this ground has been managed as a public park.

Soil Organic Matter (SOM) is normally around 4.0%. However, since much of the testing was in soil that is decomposing wood chip mulch, this high organic matter content is likely misleading to actual SOM. However the large amounts of brown soils encountered would indicate that SOM in the profile is likely adequate for most plants. SOM in the few soil test outside of the mulch beds were relatively low in SOM but not to an unreasonable level. The presence of roots in the brown soils and the healthy trees indicates that SOM is at a reasonable level even if 'low''.

Soil Profiles: The soil profiles reveal that much of the soils around the perimeter of the site have seen only limited disturbance over the life of the soil. Relatively deep brown upper layer soils that included root observation are indicative of soils that support the high quality trees. Soil profiles in locations 2, 6, 7, 8, 9, 13, 15, 16, 19, and 20 are areas where soil improvement is likely to be warranted. This improvement would be reduction in bulk density, and increases in Soil Organic Matter, or blending of the decomposing organic matter into the lower soil layer. Five of these soil profiles 2, 7, 9, 13, and 19 suggest that soil replacement or other significant soil modification may be needed to assure long-term tree growth.

Problem soil location are plotted on the attached Difficult Soil Conditions plan. This plan also indicates a delineation of areas where difficult soil conditions may be present based on all factors including: the soil test and profile review; site surface features; topography; site history; and plant performance. Work within this delineated area should consider additional soil modification requirements. The delineated area on eh east portion of the site with a question mark indicates that soil conditions may change rapidly over short distances and that generalizations may need further refinement in the design development portion of the project. Soils outside these delineated zones should be considered for soil protection or utilized design methodologies that tend to favor less grading and soil disturbance where possible.

Summary soil recommendations:

The following are recommendations for modifications to soils related to the proposed improvements in Moore Square. They are intended to guide design development of the concepts in the Master Plan.

Grading: Grading whether within or outside Tree Protection Areas is the most significant operation impacting soil quality. Grading may remove or bury important existing upper level soil profiles. It damages or destroys soil structure and modifies site hydrology. Moving soil releases organic matter. Grading, particularly cut, can damage tree root systems.

Most of these damaging impacts can be mitigated easily outside the Tree Protection Area. Within the Tree Protection Area construction strategies should focus on avoiding damage and using low impact techniques such as air spade soil tools, low ground pressure machines, and hand grading. Work areas prior to and after grading must be protected with geogrid / mulch mats and fencing.

Grading design should follow these requirements where possible.

1. Wherever existing soils are of good quality limiting the grading particularly cuts.

2. Limit cuts and fills in areas of tree protection root zones. See special provision in report "Tree Evaluations and Recommendations" for protection requirements.

3. Remove and stock pile A and B horizon soils and loosen subgrade soils before the start of any grading. Note that A and B horizon soils are those soils that are noted as being brown in color on the soil profiles. Protect soil stockpiles with breathable filter fabric.

4. In Tree Protection Area fill zones, create new A and B horizon soils and place fill using techniques that reduce the amount of compaction.

5. Respect existing site hydrology. Avoid channeling water in significantly different directions, particularly the concentration of water into small areas of the site.

6. Segregate A and B horizon soils from sub soils and restore soil profiles. See soil improvement section below.

Tree Protection: Tree protection is essentially soil protection. However, It is understood that building within the root zone of existing trees is possible if great care is taken within the root zone. Both construction and limited grading can be permissible in Tree Protection Area provided that specialized equipment and methods are utilized. Successful tree protection happens when lots of small decisions are made to fine tune the design in ways that respect the tree. A

detailed discussion on tree protection is found in the second part of this report "Tree Evaluations and Recommendations".

Soil Protection: The majority of the soil has been subjected to only minimum soil disturbances. Protecting this resource should be a critical goal of the project design. Following the grading and tree protection recommendation is an important first step.

Soil protection is similar to tree protection except prohibitions that are designed to protect existing roots are no longer critical. Larger equipment can be utilized to move soil. Cut and fill grades may be designed provided that the soils are segregated, protected, and restored.

Decomposing Mulch Layers: Across much of the site, large areas of thick mats of decomposing wood chip mulch are found. These layers were generally moist as they tend to hold too much water and not release it into the dryer soils below. Modifying these soils will be critical to long-term soil management.

1. Within tree root zone area, utilize an air spade to mix the decomposing mulch layer into the soil layer below to depths of 12 inches where possible.

2. Outside the Tree Protection Area, rip through the decomposing wood chip soil into the soil to depths of 18 inches. The ripping should mix sub soils and organic soils. Following the ripping, roto till the surface 6-8 inches of the soil and grade smooth the resulting material. Alternatively perform back hoe tilling to depths of 18 inches to mix the soil layers and fracture the lower soil profile.

Soil Improvements: in areas identified as difficult soils develop soil improvements strategies.

1. Within Tree Protection Area, loosen the soil with air spade and add compost to depths of 8-12 inches. Follow the requirements in the second part of this report under Tree Protection Plan.

2. In shrub and tree planting bed areas, outside the Tree Protection Area, utilize backhoe tilling with 4-6" of compost to depths of 18-24 inches. Apply an additional 4 inches of compost over the tilled soil and roto till the compost into the top 6-8 inches of the final grades.

3. In lawn areas develop a sand / soil / compost mix, specialized for high use turf 10" deep. Install sand choker layers and drainage. Grade soils with a minimum of 2% slopes.

APPENDIX B MOORE SQUARE TREE INVENTORY & MANAGEMENT PLAN THE BARTLETT INVENTORY SOLUTIONS TEAM

Moore Square Tree Inventory & Management Plan | 2012

Prepared for CCSGC, P.C.

Submitted by The Bartlett Inventory Solutions Team

Michael Sherwood, BIS Manager ISA Board Certified Master Arborist & Municipal Specialist #SO-1845BM, ASCA RCA#524

Jeffrey Kish, Local Manager ISA Board Certified Master Arborist #SO-1729B

Bartlett Tree Experts The R.A. Bartlett Tree Research Laboratories 13768 Hamilton Road Charlotte NC 28278-8213 704-588-1503 www.bartlett.com

LIST OF TABLES	i
LIST OF MAPS	ii
MAKING THE MOST OF YOUR INVENTORY MANAGEMENT PLAN	iii
Who's Who	iii
Subject Trees	iii
Definitions & Bolded Terms	iii
How This Document is Organized	iii
EXECUTIVE SUMMARY	iv
INTRODUCTION	1
GOALS & OBJECTIVES	1
DATA COLLECTION & TREE INSPECTION METHODOLOGY	2
Data Collection Equipment & Attribute Data	2
Specifications/Definitions	3
Age Class	3
Height Class	3
Condition Class	3
Priority of Tree Care	3
Pruning	4
ISA Tree Risk Assessment & Risk Rating System	5
RESULTS & RECOMMENDATIONS	7
Stand Dynamics	
Condition Class	
Age Class	
Tree Species Identified	
Tree Size (DBH)	13

TABLE OF CONTENTS

DBH Distrabution13
Estimated Value13
Conditions or Defects Observed16
Advanced Tree Risk Assessments (Level 3) & Tree Removal18
Pruning & Structural Support Systems21
Improper Pruning Practices21
Correct Pruning Practices
Structural Support Systems27
Soil Care
Soil Testing
Mulch Application
Bulk Density
Root Invigoration29
Root Collar Excavation
Plant Health Care32
ENTIRE INVENTORY 1 -
LIST OF APPENDED ITEMSI
Technical ReportsI
ANSI A300 (Part 1) – <i>2008</i> PruningI
Girdling RootsI
Maintenance Pruning ProgramI
Monitor IPM Program
Mulch Application Guidelines
Tree Structure EvaluationI
GlossaryI

LIST OF TABLES

Table 1: GOALS & OBJECTIVES	2
Table 2: CONSEQUENCES OF FAILURE DEFINITIONS	5
Table 3: OVERALL RISK RATING DEFINITIONS	6
Table 4: ISA MATRIX USED TO ESTIMATE THE OVERALL RISK RATING	6
Table 5: CONDITION CLASS BREAKDOWN	7
Table 6: AGE CLASS BREAKDOWN	8
Table 7: TREE SPECIES IDENTIFIED	
Table 8: TREE SIZE ACCORDING TO DBH 1	3
Table 9: DATA FIELDS FOR DETERMINING ESTIMATED TREE VALUE	4
Table 10: TOP TEN TREES - HIGHEST ESTIMATED VALUE 1	4
Table 11: LIST OF TREES WITH CONDITIONS, DEFECTS, OR OTHER STRUCTURAL ISSUES1	7
Table 12: TREE RECOMMENDED FOR ADVANCED ASSESSMENTS (LEVEL 3)	
Table 13: TREES RECOMMENDED FOR PRUNING	5
Table 14: TREES RECOMMENDED FOR PHC PROGRAM	2
Table 15: ENTIRE INVENTORY 1	-

LIST OF MAPS

Map 1:	2012 TREE INVENTORY	10
Map 2:	TREES BY AGE CLASS	11
Map 3:	TREES BY CONDITION CLASS	12
Map 4:	TOP 10 TREES - HIGHEST ESTIMATED VALUE	15
Map 5:	TREES RECOMMENDED FOR ADVANCED ASSESSMENTS (LEVEL 3)	20
Map 6:	TREES BY TREE CARE PRIORITY	26
Map 7:	TREES RECOMMENDED FOR STRUCTURAL SUPPORT SYSTEMS	27
Map 9:	TREES RECOMMENDED FOR ROOT COLLAR EXCAVATION	31
Map 11	TREES RECOMMENDED FOR PHC PROGRAM	33

Moore Square Tree Inventory and Management Plan

MAKING THE MOST OF YOUR INVENTORY MANAGEMENT PLAN

Those who operate a large business or institution understand how inventory impacts operations and budgeting. One must know what's there, how much or how many, and where it all is. But the task doesn't end there. To obtain the greatest benefit from inventory, owners or their designees must *manage* it. Are a company's tools, for example, old and defective, in need of repair, in short supply, or useless and taking up space that could be better occupied?

A good management plan will address these issues and keep the inventory current, in good condition, and functioning for the benefit and safety of those involved.

Managing trees on a large property can seem like an overwhelming task, but the same principles of inventory management apply. This inventory and management plan should provide managers the data they need to develop realistic budgets for their tree maintenance needs, and it will help make Moore Square a safer and more beautiful environment.

The following tips will assist you in making the most of this document:

Who's Who

Those who conducted the inventory and prepared this document are members of the Bartlett Inventory Solutions (BIS) team. They are also employees of Bartlett Tree Experts and operate from the Bartlett Tree Research Laboratories in Charlotte, North Carolina. Readers may interpret the terms "Bartlett Tree Experts," "Bartlett," "the BIS team," "the team," "we," and "our" as the Bartlett company and those who conducted the inventory and prepared this management plan.

Subject Trees

In this document, the term "subject trees" refers (depending on context) to some or all of the 68 trees included in the inventory.

Definitions & Bolded Terms

Some definitions or specifications are detailed within a given section to explain how readers should interpret certain terms or classifications. We have also appended a Glossary for other terms that appear throughout the document. The first reference to each of these terms appears in bold for the reader's convenience.

How This Document is Organized

As usual, the Table of Contents provides an effective road map to document contents, but following it are a List of Tables and List of Maps that users will find helpful in locating specific findings, recommendations, or tree locations. Also, a handy outline appears on page 7 that introduces the order in which results, recommendations, and the Entire Inventory will appear. All tables, photos, maps, and diagrams have numbered captions for quick reference. Starting with the Introduction, pages are numbered consecutively up to the "Entire Inventory" at the back. So that it can stand alone as a main inventory document, the Entire Inventory starts over with page -1-.

EXECUTIVE SUMMARY

In October, 2012, the Bartlett Inventory Solutions (BIS) Team from Bartlett Tree Experts was retained by CCSGC, P.C. to conduct an inventory of trees on the Moore Square. We identified 68 trees or groupings of trees that included 46 different species. The attributes that we collected include tree latitude and longitude, size, age and condition class, and a visual assessment of tree structure, health, and **vigor**.

We conducted the attribute collection using a sub-meter accuracy Global Positioning Satellite Receiver (GPSr) device with an error-in-location potential of not greater than three meters. Our recommendations for the subject trees over the next three-year period include:

Pruning

Prune 17 trees (25 for safety, health, structure, and appearance. Pruning will comply with American National Standards Institute (ANSI) A300 for pruning and ANSI Z133.1 for safety.

Advanced Tree Risk Assessments (Level 3)

Provide an andvanced tree risk assessment for 5 trees (7%) to evaluate the impact of wood decay in **stems** and **buttress roots** that show potential for failure.

Cabling, Bracing & Ground Support

Install new structural support systems in 1 trees (1%) to reduce risk of branch or whole tree failure.

Root Collar Excavations

Perform **root collar** excavations to 31 trees (46%) to lower risk of damaging conditions such as **girdling roots**, basal cankers, masking of root decay and lower-stem decay, and predisposing trees to various insect and disease pests.

Plant Health Care (PHC)

Implement Bartlett's PHC program to monitor pests and diseases on the subject trees. Treatments are therapeutic and preventive, and treatment timing is based on pest life cycle.

Soil Samples

Collect soil samples throughout the landscape and submit them for analysis that includes presence of soil nutrients, pH, organic matter, and **cation exchange capacity**.

Bulk Density Samples

Collect bulk density samples throughout the landscape to determine the extent of **soil compaction**.

Root Invigoration

Perform Bartlett's patented Root Invigoration program on trees affected by construction activities to improve aeration and promote more efficient root growth, especially for high-value trees in disturbed areas.

INTRODUCTION

In October, 2012, CCSGC, P.C. retained Bartlett Tree Experts to perform an inventory of trees in Moore Square, Raliegh, NC. Team member Michael Sherwood visited the site on October 9th to work with Jeff Kish to conduct the inventory.

The inventory included:

- identifying trees
- identifying the trees' condition, health, and vigor;
- recommending risk evaluations and removals of appropriate trees;
- recommending pruning, soil care, and plant health care treatments to promote tree safety, health, appearance, and longevity; and
- mapping the trees using GPSr hardware and Geographic Information System (GIS) software.

The methods and procedures we used to make the above determinations and recommendations are detailed in the following sections.

GOALS & OBJECTIVES

An effective management plan communicates clear goals and the specific objectives designed to carry out those goals. We intend "goal" to mean the overall aim or result we expect to achieve for the client in producing the inventory and management plan. The objectives are the specific actions taken or recommended to support goal completion. Table 1 below describes each goal and its corresponding objective(s).

Table 1: GOALS & OBJECTIVES

GOAL	OBJECTIVES TO ACCOMPLISH GOAL
Establish the tree inventory (per numbers agreed) at	Using Trimble GeoXT GPSr hardware and ArgGIS 9.3 software, collect data such as tree name, location, size, age class, and condition class.
Moore Square.	Use existing tree id #'s provided by CCSGC, P.C.
Provide mechanism for	Provide map or maps of the inventoried trees and tree grouping to assist the client in managing property areas.
managing inventory, recommendations, and related budget planning.	Submit a comprehensive management plan that documents and organizes findings and provides other resources to assist the client in efficient use of the information.
Maximize client	Include in management plan specific explanations and visuals related to plan recommendations.
understanding and implementation of	Provide appended resources that address health, procedures, and preservation standards related to tree care.
management plan.	Make periodic contact with client to follow up and answer any questions about the management plan's contents.
Maximize immediate and long-term tree health and aesthetics.	 Implement recommended plant-health-care program that uses plant health care soil care maintenance pruning
Manage immediate and long- term risk associated with trees in high-use areas.	Implement recommended risk-management measures that include • risk-reduction pruning • required removals • tree structure evaluations

DATA COLLECTION & TREE INSPECTION METHODOLOGY

In conducting the inventory, we used specialized equipment and software and followed specific procedures to determine tree characteristics, risk evaluations, and recommendations. The following explanation will assist the reader in interpreting the findings of this management plan.

Data Collection Equipment & Attribute Data

The BIS team used the Trimble GeoXT global positioning system receiver (GPSr) hardware unit and accompanying ArgGIS 9.3 software. The attribute data we collected on site are listed below.

- botanical name and regional common name according to local ISA Chapter Tree Species List
- tree location based on GPS coordinate system
- tag number
- diameter at breast height (**DBH**)
- canopy radius
- age class
- height class

- condition class
- root zone infringement, based on **dripline** and estimated **grayscape** (e.g., sidewalks) impact on root zone
- infrastructure interaction (between trees and grayscape that may cause an undesirable condition
- priority of tree care (based on 3-year management plan)
- pruning
- need for and inspection of existing cables and braces
- need for and inspection of existing lightning protection
- need for advanced tree risk assessments (Level 3)
- tree removals
- soil care recommendations
- plant health care recommendations

Specifications/Definitions

Age Class

New Planting Young Semi-mature Mature Over-mature	Tree not yet established Established tree but not in the landscape for many years Established tree but has not yet reached full growth potential Tree within its full growth potential Tree that is declining or beginning to decline due to its age
Height Class	
Small	Less than 15 feet
Medium	15 to 40 feet
Large	Greater than 40 feet
Condition Class	
Dead	
Poor	Most of the canopy displays dieback and undesirable leaf color, inappropriate leaf size or inadequate new growth. Tree or parts of tree are in the process of failure.
Fair	Parts of canopy display undesirable leaf color, inappropriate leaf size, and inadequate new growth. Parts of the tree are likely to fail.
Good	Tree health and condition are acceptable.

Priority of Tree Care

Priority class recommendations are based on a three-year management plan that takes into consideration tree species, condition, location, age, and proximity to infrastructure. We intend that this rating system assist decision makers in prioritizing tree pruning, cabling and bracing, and tree lightning protection recommendations. *Trees with a priority of 1 and an Overall Risk Rating of Extreme or High (see definitions in the next section) should be addressed immediately.* Prioritization does not take into account any budgetary or financial considerations.

Recommendations for Priorities 1, 2, and 3 are all based on observations by the inventory arborist. The following additional information clarifies each priority class:

- **Priority 1** To be addressed in years 1 or 2 of the management cycle. Priority 1 may include trees with large dead wood, structural defects, located in exposed sites, high aesthetic value, and/or parts that are currently negatively interacting with infrastructure, such as branches that touch buildings, interfere with signage or lighting, or obstruct pathways.
- **Priority 2** To be addressed in years 2 or 3 of the management cycle. Priority 2 may include trees with small dead wood, developing structural defects, located in semi-exposed sites, moderate esthetic value, and/or parts that are anticipated to negatively interact with infrastructure, such as branches that touch buildings, interfere with signage or lighting, or obstruct pathways.
- **Priority 3** To be addressed in year 3 of the management cycle. Priority 3 may include trees with small dead wood, developing structural defects, located in lesser used sites, and/or parts that are anticipated to negatively interact with infrastructure, such as branches that rub on buildings, interfere with signage or lighting, or obstruct pathways.

Pruning

Each of the following is a <u>selective pruning technique</u> to achieve the pruning goal described:

- Clean Remove one or more of dead, diseased, and/or broken branches
- RaiseProvide vertical clearance
- ThinReduce density of live branches
- **Reduce** Reduce height or spread
- **Structure** Select live branches and stems to influence orientation, spacing, growth rate, strength of attachment, and ultimate size of branches and stems

ISA Tree Risk Assessment & Risk Rating System

The International Society of Arborculture (ISA) developed a Tree Risk Assessment Protocol and Risk Rating System that Bartlett employs while conducting tree inventories. The BIS team conducts a basic tree risk assessment (Level 2) for each tree. When catergorizing tree risk the factors considered are the Likelihood of Tree Failure Impacting a **Target** and the Consequence of the Failure (Smiley *et al.* 2011). Examples of targets are people, vehicles, buildings, and other valuable objects. After assessing any targets the BIS team looks for any defects or conditions in the roots, stem, and crown that may impact a target. The team then estimates the Likelihood of a Tree Failure Impacting a Specified Target. The Consequence of Failure is then catergorized. An Overall Risk Rating is then estimated by entering the Liklihood of Failure and Impact and Consequences into the Risk Rating matrix.

The categories for Liklihood of Failure and Impact are: *Unlikely, Somewhat likely, Likely, and Very likely.*

The categories for Consequence of Failure are: Negligible, Minor, Significant, and Severe.

The categories for the Overall Risk Rating are: Low, Moderate, High, and Extreme.

The following tables describe the Overall Risk Rating in more detail:

	Consequences of Failure		
Negligible	Low value property damage that can be replaced or repaired, and do not involve personal injury.		
Minor	Low to moderate property damage, small disruptions to traffic and communications or very minor injury.		
Significant	Moderate to high value property damage, considerable disruption, or personal injury.		
Severe	Involves serious personal injury or death, high value property damage, or disruption of important activities.		

Table 2: CONSEQUENCES OF FAILURE DEFINITIONS

*(Smiley *et al.* 2011)

Table 3: OVERALL RISK RATING DEFINITIONS

	Overall Risk Rating						
Low	Some trees with level of risk may benefit from mitigation or maintenance measures, but immediate action is not usually required.						
Moderate	Mitigation and/or retaining and monitoring may be recommended. The decision for mitigation and timing of treatment depends upon the risk tolerance of the tree owner or manager.						
High	Mitigation measures should be taken. The decision for mitigation and timing of treatment depends upon the risk tolerance of the tree owner or risk manager.						
Extreme	Failure is imminent and there is a high likelihood of impacting the target. Mitigation measures should be taken as soon as possible which may include immediate restriction or access to the target zone area to avoid injury to people.						

*(Smiley *et al.* 2011)

Likelihood of Failure	Consequences						
and Impact	Negligible	Minor	Significant	Severe			
Very likely	Low	Moderate	High	Extreme			
Likely	Low	Moderate	High	High			
Somewhat likely	Low	Low	Moderate	Moderate			
Unlikely	Low	Low	Low	Low			

Table 4: ISA MATRIX USED TO ESTIMATE THE OVERALL RISK RATING

*(Smiley *et al.* 2011)

Pruning and structural support system procedures can reduce the risk of branch and leader failure to an acceptable level. We emphasize, however, that *all large trees pose a certain degree of inherent risk and this evaluation does not preclude all possibility of failure especially during severe storms.*

For those trees that the client considers hazardous and representing an immediate safety concern, we recommend placing a sign, tape, or other warning indicator near those trees until such time as the hazard can be remedied.

Trees inherently pose a certain degree of risk from breakage, failure, or other causes and conditions. Recommendations that are made by the Bartlett Tree Experts Company are intended to minimize or reduce hazardous conditions that may be associated with trees. However, there is and there can be no guaranty or certainty that efforts to correct unsafe conditions will prevent breakage or failure of a tree. Our recommendations should reduce risk of tree failure but they cannot eliminate such risk, especially in the event of a storm or any other act of God. Some hazardous conditions in landscapes are apparent while others require detailed inspection and evaluation. While a detailed inspection and evaluation should and normally does result in the detection of potentially hazardous conditions, there can be no guaranty or certainty that all hazardous conditions will be detected.

RESULTS & RECOMMENDATIONS

In reviewing the results and recommendations, the reader will find useful the specifications and definitions detailed on pages 3-4 above. We used the following categories to organize the results and recommendations, which are displayed in tables:

• Results

- Stand Dynamics This characterizes the subject trees according to
 - Condition Class
 - Age Class
 - Tree Groupings
 - Tree Species Identified
 - Tree Size per DBH
 - Estimated Value
- o Conditions or Defects Observed

• Recommendations

- o Advanced Tree Risk Assessments (Level 3) and Tree Removal
- o Pruning and Structural Support Systems by ISA Risk Rating and Priority
- Lightning Protection Systems
- o Soil Care
- o Plant Health Care

• Entire Inventory

Due to the length and detail of this table, we placed it last, under a major heading, for handy reference.

Where appropriate, we have included explanations, photos, drawings, or other information to illuminate the table contents.

Stand Dynamics

Condition Class

The breakdown of tree condition follows:

Condition ClassQuantity% of TotalGood3349%

Table 5: CONDITION CLASS BREAKDOWN

Condition Class	Quantity	
Good	33	49%
Fair	31	46%
Poor	4	6%
Dead	0	0%

Age Class

The breakdown of tree age class follows:

Table 6: AGE CLASS BREAKDOWN

Age Class	Quantity	% of Total	
Over-mature	3	4%	
Mature	43	63%	
Semi-mature	12	18%	
Young	10	15%	

Tree Species Identified

Our inventory revealed 46 different species of trees, as detailed in the following table:

Genus	Species	Common Name	Count	% Distribution of Total
Acer	buergerianum	trident maple	1	1%
	campestre	hedge maple	1	1%
	palmatum	Japanese maple	9	13%
	rubrum	red maple	2	3%
	saccharum	sugar maple	1	1%
Acer Total			14	21%
Carya	illinoinensis	pecan	3	4%
Cedrus	deodara	Deodar cedar	1	1%
Cornus	florida	flowering dogwood	1	1%
llex	spp.	holly	2	3%
Magnolia	grandiflora	southern magnolia	1	1%
	x soulangiana	saucer magnolia	1	1%
Magnolia Total			2	3%
Malus	spp.	crabapple	1	1%
Picea	pungens	Colorado blue spruce	1	1%
Prunus	x yedoensis	Yoshino cherry	1	1%
Quercus	alba	white oak	2	3%
	michauxii	swamp white oak	5	7%
	nuttallii	Nuttall oak	1	1%
	palustris	pin oak	2	3%
	phellos	willow oak	24	35%
	prinus	chestnut oak	1	1%
	shumardii	shumard oak	2	3%
Quercus Total			37	54%
Sabal	minor	palmetto	1	1%
Taxodium	distichum	common baldcypress	3	4%
Ulmus	americana	hybrid elm	1	1%
Grand Total			68	100%

Table 7: TREE SPECIES IDENTIFIED

Map 1: 2012 TREE INVENTORY

Moore Square Tree Inventory & Management Plan | November, 2012 | Page 11

Moore Square Tree Inventory & Management Plan |Novemeber, 2012 | Page 12

Tree Size (DBH)

The following chart illustrates numbers of trees according to size per DBH:

Table 8: TREE SIZE ACCORDING TO DBH

Estimated Value

As part of the Bartlett inventory process, we have included an estimated value for each tree and a cumulative total for all trees inventoried. To calculate the estimated value, we use a modified version¹ of the Trunk Formula Method published by the Council of Tree and Landscape Appraisers in *The Guide for Plant Appraisal*, 9th Edition.

¹ This version does not consider cost of purchase and installation of the largest available "like tree."

The following data fields are used in this formula:

Estimated Value	Size, species factor, condition factor, and location value
Size	Based on tree DBH (4.5 feet above grade)
Species Factor	Relative species desirability based on 100% for the tree in that geographical location. In most cases, species desirability ratings, published by the International Society of Arboriculture, are used for adjustment.
Condition Factor	Rating of the tree's structure and health based on 100%
Location	Average rating for the site and the tree's contribution and placement, based on
Factor	100%

Table 9: DATA FIELDS FOR DETERMINING ESTIMATED TREE VALUE

The cumulative total value² for all trees inventoried is **\$1,052,307.93**. The following table lists the eleven trees with the highest estimated values:

Tree	Common Name	DBH	Estimated		
ID #			Value		
2	willow oak	65	\$51,715.02		
66	willow oak	46	\$50,335.33		
6	willow oak	4g3	\$46,051.58		
4	willow oak	53	\$42 <i>,</i> 487.51		
13	willow oak	50	\$39,791.11		
32	willow oak	48	\$37,907.08		
1	swamp white oak	52	\$36,983.05		
65	swamp white oak	40	\$36,933.46		
3	swamp white oak	51	\$36,184.04		
68	willow oak	46	\$35,953.81		

Table 10: TOP TEN TREES - HIGHEST ESTIMATED VALUE

Map 4: TOP 10 TREES - HIGHEST ESTIMATED VALUE

Moore Square Tree Inventory & Management Plan | November, 2012 | Page 15

Conditions or Defects Observed

Finally, in this (results) section, we list in Table 14 trees on which we observed conditions, defects, or other structural issues. Figure 1 provides an example of a tree with branch wound..

Figure 1: Tree #32 with a branch wound present.

Tree ID #	Common Name	DBH	Condition or Defect	Condition or Defect	Condition or Defect
2	willow oak	65	wound-branch	storm damage	lightning damage
3	swamp white oak	51	wound-stem	nd-stem deadwood >2 .	
4	willow oak	53	deadwood <=2		
6	willow oak	43	deadwood <=2		
12	sugar maple	32	fungi/conks		
16	Japanese maple	8	deadwood <=2		
17	Japanese maple	4	deadwood <=2		
18	paperbark maple	8	wound-stem		
25	willow oak	17	supressed		
26	willow oak	17	codominant leaders		
27	willow oak	42	lean		
28	willow oak	20	poor branch structure		
29	white oak	37	fungi/conks		
31	pin oak	18	girdling roots present		
32	willow oak	48	wound-branch		
34	willow oak	34	other	poor branch structure	
39	common baldcypress	10	supressed		
42	willow oak	36	uneven crown	wound-stem	
43	pecan	36	lean	overextended branch	
50	Yoshino cherry	11	wound-stem		
51	southern magnolia	29	wound-stem		
52	red maple	15	girdling roots present	cavity-stem	
54	Japanese maple	12	wound-stem		
56	Japanese maple	6	deadwood >2		
58	Japanese maple	17	cavity-stem		
59	Japanese maple	25	cavity-branch	codominant leaders	
60	Japanese maple	16	wound-stem	wound-branch	
71	red maple	5	wound-stem		
72	swamp white oak	8	wound-stem		

Table 11: LIST OF TREES WITH CONDITIONS, DEFECTS, OR OTHER STRUCTURAL ISSUES

Advanced Tree Risk Assessments (Level 3) & Tree Removal

This section begins our coverage of recommendations. As part of the inventory process, the BIS team conducts a basic assessment (Level 2) from the ground. In this type of examination, the inspector can determine whether some aspect of tree structure or health indicates that a more comprehensive tree structure evaluation (Level 3) is needed to more thoroughly evaluate tree condition and risk of failure. Figure 2 provides an example of a tree defect that merits further evaluation.

Figure 2: The presence of fungal conks on Tree #29 necessitates an advanced tree risk assessment to more thoroughly assess internal decay and risk of failure.

In such cases, we may recommend advanced assessments of the roots, stem, or crown. These assessments may include climbing inspections, examination of the root system using a compressedair tool (that avoids damage to roots and underground utilities), and one or more of the following: resistance drilling; the IML Resistograph, a precision drilling instrument that provides graphical output (preferred drilling method); or sound-wave examinations that produce estimates of decay percentages in targeted areas. The goal is to use the appropriate method to evaluate impact of wood decay in stems and buttress roots that show potential for failure and to determine presence and condition of the root system.

Once we complete such advanced assessments, we can then recommend appropriate measures, such as remediation, maintenance, or removal. (A technical report on tree structure evaluation appears in the Appendix.)

The trees listed in Table 12 below met the conditions for advanced assessments (Level 3).

Tree ID #	Common Name	DBH	Roots	Stem	Crown	Condition or Defect	Condition or Defect	Condition or Defect
2	willow oak	65			yes	wound-branch	storm damage	lightning damage
3	swamp white oak	51			yes	wound-stem	deadwood >2	
11	pecan	32			yes			
12	sugar maple	32	yes	yes		fungi/conks		
29	white oak	37	yes	yes		fungi/conks		

Table 12: TREE RECOMMENDED FOR ADVANCED ASSESSMENTS (LEVEL 3)

Map 5: TREES RECOMMENDED FOR ADVANCED ASSESSMENTS (LEVEL 3)

Moore Square Tree Inventory & Management Plan | November, 2012 | Page 20

Pruning & Structural Support Systems

A commonly offered service among tree companies, pruning trees is one of the most poorly executed practices by tree workers who lack training in the basics of tree biology. "Lion's tailing," topping, and flush cuts are a few examples, and these can lead to hazardous conditions over time.

Because this practice is so misunderstood, and because specific standards exist to perform pruning correctly, the BIS team decided to include some explanation in the main body of this management plan.

Tree owners and tree-care practitioners should always keep in mind that *any pruning cut is a wound*. Informed tree-care professionals have learned to manage that wounding to preserve the health, safety, and integrity of the tree.

Improper Pruning Practices

A few of the most common pruning abuses are

- Lion's Tailing pruning that removes interior branches along the stem and scaffold branches. This encourages poor branch taper, poor wind load distribution, and risk of branch failure. It also deprives the tree of foliage it needs to produce **photosynthates**. See Figure 4.
- Topping pruning cuts that reduce a tree's size by using heading cuts that shorten branches to a predetermined size. This also deprives the tree of adequate foliage. See Figure 5.
- Flush Cuts pruning cut through the **branch collar**, flush against the trunk or parent stem, causing unnecessary injury. See Figure 6.
- Using Climbing Spikes Inappropriately Using climbing spikes on a healthy tree, for example, wounds healthy stem tissues and can lead to infection by fungal pathogens.

Figure 3: Black oval indicates general area of excessive foliage removal.

Figure 4: Examples of topping

Moore Square Tree Inventory & Management Plan | November, 2012 | Page 21

Figure 5: Examples of flush cuts

Correct Pruning Practices

For specific standards on pruning practices, readers will find ANSI Standards on this topic in the Appendix. We have, however, included below some key pruning categories and diagrams to illuminate the goal of each.

Cleaning

Selective pruning to remove one or more of the following parts: dead, diseased, and/or broken branches.

Figure 6: Illustration of crown cleaning
Raising

Selectively pruning to provide vertical clearance.

Figure 7: Illustration of crown raising

Thinning

Selective pruning to reduce density of live branches.

Figure 8: Illustration of thinning

Reducing (Reduction Pruning)

Selective pruning to reduce height or spread.

Structural

Selective pruning of live branches and stems to influence orientation, spacing, growth rate, strength of attachment, and ultimate size of branches and stems.

Figure 10: Illustration of structural pruning

We recommended pruning on the following trees:

Tree ID	D Common Name DBH Tree Care Risk		Risk	Clean	Thin	Structural	
#	Priority		Rating				
43	pecan	36	1	low	yes		
3	swamp white	51	1		yes		
	oak						
21	Shumard oak	6	1				yes
36	willow oak	10	1				yes
38	hybrid elm	7	1				yes
45	willow oak	44	1		yes		
49	Shumard oak	3	1				yes
100	palmetto	7	1		yes		
4	willow oak	53	2		yes		
6	willow oak	43	2		yes		
16	Japanese maple	8	2		yes		
17	Japanese maple	4	2		yes		
18	paperbark maple	8	2		yes		
31	pin oak	18	2			yes	yes
73	swamp white oak	8	2				yes
56	Japanese maple	6	3		yes		
72	swamp white	8	3				yes
	oak						

Table 13: TREES RECOMMENDED FOR PRUNING

Map 6: TREES BY TREE CARE PRIORITY

Moore Square Tree Inventory & Management Plan | November, 2012 | Page 26

Structural Support Systems

Cabling, bracing, and guying are structural support systems that can reduce risk of failure by limiting movement of stems or branches in certain situations. Examples include co-dominant stems or overextended branches with heavy foliage loads. Often cabling and bracing are combined with pruning to lighten the load on these branches or stems. Figure 12 illustrates a tree that could benefit from cabling.

We recommend that the following trees have new support systems installed:

Table 14: TREE RECOMMENDED FOR STRUCTURAL SUPPORT SYSTEMS

Tree ID #	Common Name	DBH	Tree Care Priority	Support System	Support System Details
43	pecan	36	1	yes	New 1

Map 7: TREES RECOMMENDED FOR STRUCTURAL SUPPORT SYSTEMS

Soil Care

Urban soils (as opposed to forest soils) are often mixed with the byproducts of construction activities that build our foundations, driveways, streets, parking lots, and other structures and grayscapes. This material compromises the physical, chemical, and biological properties that create healthy soils. Bartlett Tree Experts recommends several procedures and treatments that address soil quality. We address some of these below.

Soil Testing

Collecting soil samples and having them tested helps determine nutrients that may be lacking, unfavorable soil pH values, and adequacy of soil organic matter. Following laboratory test results, we can implement a prescription fertilization program to balance soil chemistry and optimize conditions for plant growth.

Mulch Application

Proper mulching provides many benefits to trees and shrubs. It moderates soil temperatures, reduces soil moisture loss, reduces soil compaction, provides nutrients, and improves soil structure. This practice results in more root growth and healthier plants. Mulch is frequently applied incorrectly, so we recommend that readers inspect the technical report on mulch application guidelines that appears in the Appendix. Figure 13 illustrates root growth density under grass versus mulch.

Figure 11: Example of root density under grass versus mulch

Bulk Density

Compacted soils are regrettably common in the urban setting. A bulk density test, which requires an undisturbed core sample, measures the level of soil compaction. Arborists can use the results to diagnose problems or to determine what size holes to dig for planting. If soil density exceeds a measured threshold for a given soil type and tree species, we recommend Bartlett's Root Invigoration program.

Root Invigoration

The aim of Bartlett's patented Root Invigoration Program is to improve soil conditions by addressing soil compaction and promoting efficient root growth, especially for high-value trees in disturbed areas. The process includes taking soil samples to determine what nutrients are deficient, performing a root collar excavation, "air-tilling" a portion of the root zone to find fine roots, incorporating organic matter, fertilizing (based on soil sample), and applying mulch. The area of the root system treated can vary by tree. For the Root Invigoration Program to be successful, proper watering techniques must be employed after the process is complete.

Root Collar Excavation

Excavating the root collar is necessary for trees whose buttress roots are covered by excess soil or mulch. Buried root collars can contribute to tree health problems, including girdling roots, basal cankers, and masking root and lower stem decay.

Figures 14, 15, and 16 provide examples of some of the above issues.

Figure 12: No root flare is visible at this tree's base. The root collar is buried.

Figure 13: Example of exposed root collar.

Figure 14: Example of improper mulch application, known as "volcano mulch."

The following trees are recommended for root collar excavations:

Tree ID #	Common Name	DBH
4	willow oak	53
5	white oak	35
6	willow oak	43
8	flowering dogwood	4
11	pecan	32
12	sugar maple	32
13	willow oak	50
15	pecan	27
16	Japanese maple	8
17	Japanese maple	4
18	paperbark maple	8
20	holly	9
21	Shumard oak	6
23	pin oak	20
30	willow oak	33

Table 15: T	REES REG	COMMENDED FO	OR ROOT CO	OLLAR E	EXCAVATIONS	S

31	pin oak	18	
35	trident maple	3	
36	willow oak	10	
49	Shumard oak	3	
50	Yoshino cherry	11	
52	red maple	15	
53	Colorado blue	7	
	spruce		
59	Japanese maple	25	
62	willow oak	18	
65	swamp white oak	40	
67	Deodar cedar	16	
69	willow oak	43	
70	Nuttall oak	4	
71	red maple	5	
72	swamp white oak	8	
73	swamp white oak		

Map 8: TREES RECOMMENDED FOR ROOT COLLAR EXCAVATION

Moore Square Tree Inventory & Management Plan | November, 2012 | Page 31

Plant Health Care

The BIS team also recommends a Plant Health Care (PHC) Program for trees in the formal landscape. A PHC program monitors for potentially damaging insects, diseases and cultural problems that are often seasonal and were not evident during our inventory visits. These pests include, but are not limited to, the following:

- Anthracnose on flowering dogwood
- Boring Insects on a variety of tree species
- Caterpillar Defoliators on a variety of tree species, especially oak
- Suspected Phytophthora Root Rot and Canker on a variety of tree species, especially beech species
- Scab and Rust Fungi on crabapple and apple species.
- Scale Insects on a variety of tree species, especially oak
- Spider Mites on a variety of tree species

We identified the following trees for a PHC program at this time:

Table 16: TREES RECOMMENDED FOR PHC PROGRAM

Tree ID	Common Name	DBH	Pest or
#			Disease
1	swamp white	52	cankers
	oak		
23	pin oak	20	cankers
55	Japanese maple	15	scale
66	willow oak	46	borers
67	Deodar cedar	16	borers
70	Nuttall oak	4	mites
71	red maple	5	cankers

Map 9: TREES RECOMMENDED FOR PHC PROGRAM

Moore Square Tree Inventory & Management Plan |Novemeber, 2012 | Page 33

ENTIRE INVENTORY

Table 17: ENTIRE INVENTORY

Tree ID #	Genus	Species	Common Name	DBH	Age Class	Height Class	Tree Care Priority	Estimated Value
1	Quercus	michauxii	swamp white oak	52	mature	large		\$36,983.05
2	Quercus	phellos	willow oak	65	over- mature	large		\$51,715.02
3	Quercus	michauxii	swamp white oak	51	over- mature	large	1	\$36,184.04
4	Quercus	phellos	willow oak	53	mature	large	2	\$42,487.51
5	Quercus	alba	white oak	35	mature	large		\$24,772.58
6	Quercus	phellos	willow oak	43	mature	large	2	\$46,051.58
7	Quercus	phellos	willow oak	29	mature	large		\$23,873.61
8	Cornus	florida	flowering dogwood	4	semi- mature	small		\$324.42
10	Quercus	phellos	willow oak	43	mature	large		\$32,893.99
11	Carya	illinoinensis	pecan	32	mature	large		\$25,315.33
12	Acer	saccharum	sugar maple	32	mature	large		\$20,568.70
13	Quercus	phellos	willow oak	50	mature	large	•••	\$39,791.11
15	Carya	illinoinensis	pecan	27	mature	large		\$18,394.89
16	Acer	palmatum	Japanese maple	8	mature	small	2	\$1,816.78
17	Acer	palmatum	Japanese maple	4	semi- mature	small	2	\$324.42
18	Acer	campestre	paperbark maple	8	semi- mature	small	2	\$1,614.91
19	Magnolia	x soulangiana	saucer magnolia	5	mature	small		\$551.97
20	llex	sp.	holly	9	mature	small		\$2,120.52
21	Quercus	shumardii	Shumard oak	6	young	medium	1	\$851.62
23	Quercus	palustris	pin oak	20	mature	large		\$4,505.90
24	Malus	sp.	flowering crabapple	11	mature	medium		\$1,908.25
25	Quercus	phellos	willow oak	17	semi- mature	large		\$5,859.92
26	Quercus	phellos	willow oak	17	semi- mature	large		\$5,859.92
27	Quercus	phellos	willow oak	42	mature	large		\$31,839.61
28	Quercus	phellos	willow oak	20	mature	large		\$4,866.37
29	Quercus	alba	white oak	37	mature	large		\$27,184.25
30	Quercus	phellos	willow oak	33	mature	large		\$21,570.24
31	Quercus	palustris	pin oak	18	semi- mature	large	2	\$5,109.69
32	Quercus	phellos	willow oak	48	mature	large		\$37,907.08
33	Quercus	phellos	willow oak	33	mature	large		\$30,198.34
34	Quercus	phellos	willow oak	34	mature	large		\$13,668.31
35	Acer	buergerianum	trident maple	3	young	small		\$249.81
36	Quercus	phellos	willow oak	10	young	medium	1	\$2,838.72
38	Ulmus	sp.	hybrid elm	7	young	medium	1	\$540.93

Moore Square Tree Inventory & Management Plan |Novemeber, 2012 | Page - 1 -